Nejvíce citovaný článek - PubMed ID 33513832
The Photostability of Novel Boron Hydride Blue Emitters in Solution and Polystyrene Matrix
The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.
- Publikační typ
- časopisecké články MeSH
The action of AlCl3 on room-temperature tetrachloromethane solutions of anti-B18H22 (1) results in a mixture of fluorescent isomers, 3,3'-Cl2-B18H20 (2) and 3,4'-Cl2-B18H20 (3), together isolated in a 76% yield. Compounds 2 and 3 are capable of the stable emission of blue light under UV-excitation. In addition, small amounts of other dichlorinated isomers, 4,4'-Cl2-B18H20 (4), 3,1'-Cl2-B18H20 (5), and 7,3'-Cl2-B18H20 (6) were isolated, along with blue-fluorescent monochlorinated derivatives, 3-Cl-B18H21 (7) and 4-Cl-B18H21 (8), and trichlorinated species 3,4,3'-Cl3-B18H19 (9) and 3,4,4'-Cl3-B18H19 (10). The molecular structures of these new chlorinated derivatives of octadecaborane are delineated, and the photophysics of some of these species are discussed in the context of the influence that chlorination bears on the luminescence of anti-B18H22. In particular, this study produces important information on the effect that the cluster position of these substitutions has on luminescence quantum yields and excited-state lifetimes.
- Klíčová slova
- anti-B18H22, chlorination, cluster boron hydrides, excited-state lifetime, fluorescence, halogenation, luminescence, quantum yield, substitution,
- MeSH
- halogenace * MeSH
- isomerie MeSH
- luminiscence * MeSH
- molekulární struktura MeSH
- Publikační typ
- časopisecké články MeSH
New anti-octadecaborane(22) laser dyes have been recently introduced. However, their application in solid thin films is limited, despite being very desirable for electronics. Spectroscopic methods, photoluminescence (PL), and infrared reflection-absorption spectroscopy (IRRAS), are here used to reveal structural responses to a temperature change in thin polymer films made of π- and σ-conjugated and non-conjugated polymers and anti-octadecaborane(22) and its tetra-alkylatedderivatives. It has been observed that borane clusters are not firmly fixed within polymer matrices and that their ability for diffusion out of the polymer film is unprecedented, especially at higher temperatures. This ability is related to thermodynamic transitions of polymer macromolecular chains. PL and IRRAS spectra have revealed a clear correlation with β-transition and α-transition of polymers. The influence of structure and molecular weight of a polymer and the concentration and the substitution type of clusters on mobility of borane clusters within the polymer matrix is demonstrated. A solution is proposed that led to an improvement of the temperature stability of films by 45 °C. The well-known spectroscopic methods have proved to be powerful tools for a non-routine description of the temperature behavior of both borane clusters and polymer matrices.
- Klíčová slova
- borane cluster, infrared reflection–absorption spectroscopy, photoluminescence spectroscopy, thin film, transition temperature,
- MeSH
- barvicí látky MeSH
- borany * MeSH
- lasery MeSH
- polymery * chemie MeSH
- spektrofotometrie infračervená MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- barvicí látky MeSH
- borany * MeSH
- polymery * MeSH