Most cited article - PubMed ID 33755355
The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation
OBJECTIVES: This cross-sectional analysis from the CZecking Heart Failure in patients with advanced Chronic Kidney Disease trial (ISRCTN18275480) examined pulmonary hypertension and right ventricular-pulmonary arterial coupling in patients on chronic hemodialysis. The aims of this analysis were: 1. To analyze relations between pulmonary hypertension and right ventricular-pulmonary arterial coupling with dialysis access flow and current hydration; 2. To analyze structural heart changes associated with right ventricular-pulmonary arterial uncoupling; 3. To reveal the prevalence, etiology and severity of pulmonary hypertension in the Czech hemodialysis population. METHODS: We performed expert echocardiography, vascular access flow measurements, bioimpedance analysis, and laboratory testing in 336 hemodialysis patients. RESULTS: Pulmonary hypertension was present in 34% (114/336) patients and right ventricular-pulmonary arterial uncoupling was present in 25% of patients with pulmonary hypertension. Only weak associations between the flow of the dialysis arteriovenous access and estimated pulmonary arterial systolic pressure and right ventricular-pulmonary arterial coupling was proved. There was a strong association between hydration status assessed by estimated central venous pressure with pulmonary arterial systolic pressure (Rho 0.6, p < 0.0001) and right ventricular-pulmonary arterial coupling (Rho -0.52, p < 0.0001) and association between overhydration to extracellular water ratio with pulmonary arterial systolic pressure (Rho 0.31, p = 0.0001) and right ventricular-pulmonary arterial coupling (Rho -0.29, p = 0.002). The prevalence of heart failure was significantly higher in patients with right ventricular-pulmonary arterial uncoupling (88% vs. 52%, p = 0.0003). CONCLUSION: These findings suggest that optimizing volume status and treating heart failure should be prioritized in hemodialysis patients to prevent pulmonary hypertension progression and right ventricular-pulmonary arterial uncoupling.
- Keywords
- Right ventricular-pulmonary arterial coupling, arteriovenous access flow, chronic hemodialysis, fluid overload, heart failure, pulmonary hypertension,
- MeSH
- Pulmonary Artery * physiopathology diagnostic imaging MeSH
- Kidney Failure, Chronic * therapy complications MeSH
- Renal Dialysis * adverse effects MeSH
- Echocardiography MeSH
- Middle Aged MeSH
- Humans MeSH
- Hypertension, Pulmonary * physiopathology epidemiology etiology MeSH
- Prevalence MeSH
- Cross-Sectional Studies MeSH
- Aged MeSH
- Heart Ventricles * physiopathology diagnostic imaging MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
Arteriovenous fistula (AVF) is the best method of vascular access for hemodialysis. This approach can lead to several complications, such as hyperkinetic heart failure due to a hyperfunctional AVF or dilatation of the feeding artery. These are late complications, especially in patients after a successful kidney transplantation. An observational study was performed focusing on patients more than 12 months after kidney transplantation. The AVF was evaluated by ultrasound and, if the outflow exceeded 1.5 L/min, an echocardiogram was performed. Surgical management was indicated if the cardiac index was higher than 3.9 L/min/m2 or upon finding a brachial artery aneurysm. A total of 208 post- kidney transplantation patients were examined over a 3-year period, of which 46 subjects (22.11%) had hyperfunctional AVF and 34 cases (16.34%) of feeding artery dilatation were determined. In total, 40 AVF flow reduction and 6 AVF ligation procedures were performed. The median AVF flow before and after the reduction was 2955 mL/min and 1060 mL/min, respectively. Primary patency after flow reduction was 88.3% at 12 months. Late AVF complications in patients following kidney transplantation are quite common. It is necessary to create a screening program to monitor AVFs in these patients.
- Keywords
- AVF flow reduction, AVF ligation, hyperfunctional AVF, kideny transplantation, screening,
- MeSH
- Brachial Artery surgery MeSH
- Arteriovenous Shunt, Surgical * adverse effects MeSH
- Renal Dialysis * MeSH
- Adult MeSH
- Echocardiography MeSH
- Middle Aged MeSH
- Humans MeSH
- Follow-Up Studies MeSH
- Postoperative Complications etiology MeSH
- Vascular Patency MeSH
- Aged MeSH
- Kidney Transplantation * adverse effects MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
- MeSH
- Arteriovenous Fistula physiopathology diagnosis complications MeSH
- Arteriovenous Shunt, Surgical methods MeSH
- Renal Dialysis MeSH
- Hemodynamics * physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Heart Failure * physiopathology diagnosis MeSH
- Cardiac Output, High physiopathology etiology diagnosis MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Letter MeSH
Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is one of the most frequently used mechanical circulatory support devices. Distribution of extracorporeal membrane oxygenation flow depends (similarly as the cardiac output distribution) on regional vascular resistance. Arteriovenous fistulas (AVFs), used frequently as hemodialysis access, represent a low-resistant circuit which steals part of the systemic perfusion. We tested the hypothesis that the presence of a large Arteriovenous fistulas significantly changes organ perfusion during a partial and a full Veno-arterial extracorporeal membrane oxygenation support. Methods: The protocol was performed on domestic female pigs held under general anesthesia. Cannulas for Veno-arterial extracorporeal membrane oxygenation were inserted into femoral artery and vein. The Arteriovenous fistulas was created using another two high-diameter extracorporeal membrane oxygenation cannulas inserted in the contralateral femoral artery and vein. Catheters, flow probes, flow wires and other sensors were placed for continuous monitoring of haemodynamics and organ perfusion. A stepwise increase in extracorporeal membrane oxygenation flow was considered under beating heart and ventricular fibrillation (VF) with closed and opened Arteriovenous fistulas. Results: Opening of a large Arteriovenous fistulas (blood flow ranging from 1.1 to 2.2 L/min) resulted in decrease of effective systemic blood flow by 17%-30% (p < 0.01 for all steps). This led to a significant decrease of carotid artery flow (ranging from 13% to 25% after Arteriovenous fistulas opening) following VF and under partial extracorporeal membrane oxygenation support. Cerebral tissue oxygenation measured by near infrared spectroscopy also decreased significantly in all steps. These changes occurred even with maintained perfusion pressure. Changes in coronary artery flow were driven by changes in the native cardiac output. Conclusion: A large arteriovenous fistula can completely counteract Veno-arterial extracorporeal membrane oxygenation support unless maximal extracorporeal membrane oxygenation flow is applied. Cerebral blood flow and oxygenation are mainly compromised by the effect of the Arteriovenous fistulas. These effects could influence brain function in patients with Arteriovenous fistulas on Veno-arterial extracorporeal membrane oxygenation.
- Keywords
- animal model, arteriovenous fistula, cerebral blood flow, cerebral tissue oxygenation, veno-arterial extracorporeal membrane oxygenation,
- Publication type
- Journal Article MeSH
Background: A large arteriovenous fistula (AVF) is a low-resistant circuit that affects organ perfusion and systemic hemodynamics even in standard conditions. The extent of its' effect in critical states has not been elucidated yet. We used norepinephrine to create systemic vasoconstriction, dobutamine to create high cardiac output, and rapid right ventricle pacing as a model of acute heart failure in a porcine model of high-flow AVF circulation. Methods: The protocol was performed on nine domestic female pigs under general anesthesia. AVF was created by connecting two high-diameter ECMO cannulas inserted in the femoral artery and vein. Continuous hemodynamic monitoring was performed throughout the protocol. Three interventions were performed-moderate dose of norepinephrine (0.25 ug/kg/min), moderate dose of dobutamine (10 ug/kg/min) and rapid right ventricle pacing to simulate low cardiac output state with mean arterial pressure under 60 mmHg. Measurements were taken with opened and closed arteriovenous fistula. Results: Continuous infusion of norepinephrine with opened AVF significantly increased mean arterial pressure (+20%) and total cardiac output (CO) (+36%), but vascular resistance remained virtually unchanged. AVF flow (Qa) rise correlated with mean arterial pressure increase (+20%; R = 0.97, p = 0.0001). Effective cardiac output increased, leading to insignificant improvement in organ perfusion. Dobutamine substantially increased cardiac output with insignificant effect on AVF flow and mean arterial pressure. Carotid artery blood flow increased significantly after dobutamine infusion by approximately 30%, coronary flow velocity increased significantly only in closed AVF state. The effective cardiac output using the heart failure model leading to decrease of carotid artery flow and worsening of brain and peripheral tissue oximetry. AVF blood flow also dropped significantly and proportionally to pressure, but Qa/CO ratio did not change. Therefore, the effective cardiac output decreased. Conclusion: In abovementioned extreme hemodynamic conditions the AVF flow was always directly proportional to systemic perfusion pressure. The ratio of shunt flow to cardiac output depended on systemic vascular resistance. These experiments highlight the detrimental role of a large AVF in these critical conditions' models.
- Keywords
- arteriovenous fistula, dobutamine, hyperkinetic circulation, low cardiac output, norepinephrine,
- Publication type
- Journal Article MeSH
INTRODUCTION: Heart failure (HF) is a serious complication of end-stage kidney disease (ESKD). However, most data come from retrospective studies that included patients on chronic hemodialysis at the time of its initiation. These patients are frequently overhydrated, which significantly influences the echocardiogram findings. The primary aim of this study was to analyze the prevalence of heart failure and its phenotypes. The secondary aims were (1) to describe the potential of N-terminal pro-brain natriuretic peptide (NTproBNP) for HF diagnosis in ESKD patients on hemodialysis, (2) to analyze the frequency of abnormal left ventricular geometry, and (3) to describe the differences between various HF phenotypes in this population. METHODS: We included all patients on chronic hemodialysis for at least 3 months from five hemodialysis units who were willing to participate, had no living kidney transplant donor, and had a life expectancy longer than 6 months at the time of inclusion. Detailed echocardiography together with hemodynamic calculations, dialysis arteriovenous fistula flow volume calculation, and basic lab analysis were performed in conditions of clinical stability. Excess of severe overhydration was excluded by clinical examination and by employing bioimpedance. RESULTS: A total of 214 patients aged 66.4 ± 14.6 years were included. HF was diagnosed in 57% of them. Among patients with HF, HF with preserved ejection fraction (HFpEF) was, by far, the most common phenotype and occurred in 35%, while HF with reduced ejection fraction (HFrEF) occurred only in 7%, HF with mildly reduced ejection fraction (HFmrEF) in 7%, and high-output HF in 9%. Patients with HFpEF differed from patients with no HF significantly in the following: they were older (62 ± 14 vs. 70 ± 14, p = 0.002) and had a higher left ventricular mass index [96(36) vs. 108(45), p = 0.015], higher left atrial index [33(12) vs. 44(16), p < 0.0001], and higher estimated central venous pressure [5(4) vs. 6(8), p = 0.004] and pulmonary artery systolic pressure [31(9) vs. 40(23), p = 0.006] but slightly lower tricuspid annular plane systolic excursion (TAPSE): 22 ± 5 vs. 24 ± 5, p = 0.04. NTproBNP had low sensitivity and specificity for diagnosing HF or HFpEF: with the use of the cutoff value of 8,296 ng/L, the sensitivity of HF diagnosis was only 52% while the specificity was 79%. However, NTproBNP levels were significantly related to echocardiographic variables, most significantly to the indexed left atrial volume (R = 0.56, p < 10-5) and to the estimated systolic pulmonary arterial pressure (R = 0.50, p < 10-5). CONCLUSIONS: HFpEF was by far the most common heart failure phenotype in patients on chronic hemodialysis and was followed by high-output HF. Patients suffering from HFpEF were older and had not only typical echocardiographic changes but also higher hydration that mirrored increased filling pressures of both ventricles than in those of patients without HF.
- Keywords
- HFPEF, echocardiography, end-stage renal disease, heart failure, high-output heart failure,
- Publication type
- Journal Article MeSH
Background: Arteriovenous fistulas (AVF) represent a low resistant circuit. It is known that their opening leads to decreased systemic vascular resistance, increased cardiac output and other hemodynamic changes. Possible competition of AVF and perfusion of other organs has been observed before, however the specific impact of AVF has not been elucidated yet. Previous animal models studied long-term changes associated with a surgically created high flow AVF. The aim of this study was to create a simple AVF model for the analysis of acute hemodynamic changes. Methods: Domestic female pigs weighing 62.6 ± 5.2 kg were used. All the experiments were held under general anesthesia. The AVF was created using high-diameter ECMO cannulas inserted into femoral artery and vein. Continuous hemodynamic monitoring was performed throughout the protocol. Near-infrared spectroscopy sensors, flow probes and flow wires were inserted to study brain and heart perfusion. Results: AVF blood flow was 2.1 ± 0.5 L/min, which represented around 23% of cardiac output. We observed increase in cardiac output (from 7.02 ± 2.35 L/min to 9.19 ± 2.99 L/min, p = 0.0001) driven dominantly by increased heart rate, increased pulmonary artery pressure, and associated right ventricular work. Coronary artery flow velocity rose. On the contrary, carotid artery flow and brain and muscle tissue oxygenation measured by NIRS decreased significantly. Conclusions: Our new non-surgical AVF model is reproducible and demonstrated an acute decrease of brain and muscle perfusion.
- Keywords
- animal model, arteriovenous fistula, cerebral oxygenation, coronary artery flow, hyperkinetic circulation, tissue perfusion,
- Publication type
- Journal Article MeSH