Nejvíce citovaný článek - PubMed ID 33784145
Exploring ultrafast magnetization control in 2D magnets via laser pulses is established, yet the interplay between spin dynamics and the lattice remains underexplored. Utilizing real-time time-dependent density functional theory (rt-TDDFT) coupled with Ehrenfest dynamics and nonadiabatic molecular dynamics (NAMD) simulations, we systematically investigate the laser-induced spin-nuclei dynamics with pre-excited A1g and E2g coherent phonons in the 2D ferromagnet Fe3GeTe2 (FGT) monolayer. Selective pre-excitation of coherent phonons under ultrafast laser irradiation significantly alters the local spin moment of FGT, consequently inducing additional spin loss attributed to the nuclear motion-induced asymmetric interatomic charge transfer. Excited spin-resolved charge undergoes a bidirectional spin-flip between spin-down and spin-up states, characterized by a subtle change in the spin moment within approximately 100 fs, followed by unidirectional spin-flip, which will further contribute to the spin moment loss of FGT within tens of picoseconds. Our results shed light on the coupling of coherent phonons with magnetization dynamics in 2D limit.
- Klíčová slova
- Fe3GeTe2, laser-induced coherent phonon, nuclei dynamics, real-time TDDFT, ultrafast spin dynamics,
- Publikační typ
- časopisecké články MeSH
Despite spin (SAM) and orbital (OAM) angular momentum dynamics being well-studied in demagnetization processes, their components receive less focus. Here, we utilize real-time time-dependent density functional theory (rt-TDDFT) to unveil significant x and y components of SAM and OAM induced by circularly left (σ+) and right (σ-) polarized laser pulses in ferromagnetic Fe, Co, and Ni. Our results show that the magnitude of the OAM is an order of magnitude larger than that of the SAM, highlighting a stronger optical response from the orbital degrees of freedom of electrons. Intriguingly, σ+ and σ- pulses induce chirality in the precession of SAM and OAM, respectively, with clear associations with laser frequency and duration. Finally, we demonstrate the time scale of the OAM and SAM precession occurs even earlier than that of the demagnetization process and the OISTR effect. Our results provide detailed insight into the dynamics of SAM and OAM during and shortly after a polarized laser pulse.
- Publikační typ
- časopisecké články MeSH
We employ real-time time-dependent density functional theory (rt-TDDFT) and ab initio nonadiabatic molecular dynamics (NAMD) to systematically investigate the ultrafast laser pulses induced spin transfer and relaxation dynamics of two-dimensional (2D) antiferromagnetic-ferromagnetic (AFM/FM) MnPS3/MnSe2 van der Waals heterostructures. We demonstrate that laser pulses can induce a ferrimagnetic (FiM) state in the AFM MnPS3 layer within tens of femtoseconds and maintain it for subpicosecond time scale before reverting to the AFM state. We identify the mechanism in which the asymmetric optical intersite spin transfer (OISTR) effect occurring within the sublattices of the AFM and FM layers drives the interlayer spin-selective charge transfer, leading to the transition from AFM to FiM state. Furthermore, the unequal electron-phonon coupling of spin-up and spin-down channels of AFM spin sublattice causes an inequivalent spin relaxation, in turn extending the time scale of the FiM state. These findings are essential for designing novel optical-driven ultrafast 2D magnetic switches.
- Klíčová slova
- 2D magnetism, antiferromagnetism, nonadiabatic MD, real-time TDDFT, spin dynamics, spin relaxation,
- Publikační typ
- časopisecké články MeSH