Most cited article - PubMed ID 33802802
Clinical Evidence behind Stereotactic Radiotherapy for the Treatment of Ventricular Tachycardia (STAR)-A Comprehensive Review
Robots are defined as programmable machines that can perform specified tasks. Medical robots are emerging solutions in the field of cardiology leveraging recent technological innovations of control systems, sensors, actuators, and imaging modalities. Robotic platforms are successfully applied for percutaneous coronary intervention, invasive cardiac electrophysiology procedures as well as surgical operations including minimally invasive aortic and mitral valve repair, coronary artery bypass procedures, and structural heart diseases. Furthermore, machines are used as staff-assisting tools to support nurses with repetitive clinical duties i.e., food delivery. High precision and resolution allow for excellent maneuverability, enabling the performance of medical procedures in challenging anatomies that are difficult or impossible using conventional approaches. Moreover, robot-assisted techniques protect operators from occupational hazards, reducing exposure to ionizing radiation, and limiting risk of orthopedic injuries. Novel automatic systems provide advantages for patients, ensuring device stability with optimized utilization of fluoroscopy. The acceptance of robotic technology among healthcare providers as well as patients paves the way for widespread clinical application in the field of cardiovascular medicine. However, incorporation of robotic systems is associated with some disadvantages including high costs of installation and expensive disposable instrumentations, the need for large operating room space, and the necessity of dedicated training for operators due to the challenging learning curve of robotic-assisted interventional systems.
- Keywords
- CABG, cardiology, congenital heart disease, electrophysiology, interventional cardiology, robotics,
- Publication type
- Journal Article MeSH
- Review MeSH
The EU Horizon 2020 Framework-funded Standardized Treatment and Outcome Platform for Stereotactic Therapy Of Re-entrant tachycardia by a Multidisciplinary (STOPSTORM) consortium has been established as a large research network for investigating STereotactic Arrhythmia Radioablation (STAR) for ventricular tachycardia (VT). The aim is to provide a pooled treatment database to evaluate patterns of practice and outcomes of STAR and finally to harmonize STAR within Europe. The consortium comprises 31 clinical and research institutions. The project is divided into nine work packages (WPs): (i) observational cohort; (ii) standardization and harmonization of target delineation; (iii) harmonized prospective cohort; (iv) quality assurance (QA); (v) analysis and evaluation; (vi, ix) ethics and regulations; and (vii, viii) project coordination and dissemination. To provide a review of current clinical STAR practice in Europe, a comprehensive questionnaire was performed at project start. The STOPSTORM Institutions' experience in VT catheter ablation (83% ≥ 20 ann.) and stereotactic body radiotherapy (59% > 200 ann.) was adequate, and 84 STAR treatments were performed until project launch, while 8/22 centres already recruited VT patients in national clinical trials. The majority currently base their target definition on mapping during VT (96%) and/or pace mapping (75%), reduced voltage areas (63%), or late ventricular potentials (75%) during sinus rhythm. The majority currently apply a single-fraction dose of 25 Gy while planning techniques and dose prescription methods vary greatly. The current clinical STAR practice in the STOPSTORM consortium highlights potential areas of optimization and harmonization for substrate mapping, target delineation, motion management, dosimetry, and QA, which will be addressed in the various WPs.
- Keywords
- Cardiac arrhythmias, Consortium, EU Horizon 2020, Stereotactic arrhythmia radioablation, Stereotactic body radiotherapy, Ventricular tachycardia,
- MeSH
- Catheter Ablation * adverse effects methods MeSH
- Tachycardia, Ventricular * MeSH
- Humans MeSH
- Prospective Studies MeSH
- Arrhythmias, Cardiac MeSH
- Heart Ventricles MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Cardiac stereotactic body radiotherapy is an emerging treatment method for recurrent ventricular tachycardia refractory to invasive treatment methods. The single-fraction delivery of 25 Gy was assumed to produce fibrosis, similar to a post-radiofrequency ablation scar. However, the dynamics of clinical response and recent preclinical findings suggest a possible different mechanism. The data on histopathological presentation of post-radiotherapy hearts is scarce, and the authors provide significantly different conclusions. In this article, we present unique data on histopathological examination of a heart explanted from a patient who had a persistent anti-arrhythmic response that lasted almost a year, until a heart failure exacerbation caused a necessity of a heart transplant. Despite a complete treatment response, there was no homogenous transmural fibrosis in the irradiated region, and the overall presentation of the heart was similar to other transplanted hearts of patients with advanced heart failure. In conclusion, our findings support the theorem of functional changes as a source of the anti-arrhythmic mechanism of radiotherapy and show that durable treatment response can be achieved in absence of transmural fibrosis of the irradiated myocardium.
- Keywords
- STAR, radioablation, stereotactic body radiotherapy (SBRT), structural heart disease, ventricular tachycardia,
- Publication type
- Journal Article MeSH
BACKGROUND: Stereotactic Arrhythmia Radioablation (STAR) is an emerging treatment modality for patients with sustained ventricular tachycardia (VT) and refractory to treatment with drugs and radiofrequency catheter ablation (RFA). It is believed that up to 12-17% of patients experience recurrence of VT within 1 year of follow-up; thus, novel therapeutic options are needed. The aim of this article is to present initial experience within a novel treatment modality for VT. CASE SUMMARY: Two patients with a medical history of coronary artery disease and heart failure with reduced left ventricle (LV) ejection fraction, after implantation of cardioverter-defibrillator (ICD) and previous unsuccessful RFAs owing to sustained VT were admitted to the cardiology department due to recurrence of sustained VT episodes. With electroanatomical mapping (EAM), the VT substrate in LV has been confirmed and specified. In order to determine the target volume for radioablation, contrast-enhanced computed tomography was performed and the arrhythmia substrate was contoured using EAM data. Using the Volumetric Modulated Arc Therapy technique and three 6 MeV flattening filter-free photon beam fields, a single dose of 25 Gy was delivered to the target volume structure located in the apex and anterior apical segments of LV in the first patient and in the apex, anterolateral and inferior apical segments of the second patient. In both cases, volumes of the target structures were comparable. Interrogation of the implanted ICD at follow-up visits throughout 6 months after the treatment revealed no VT episodes in the first patient and sudden periprocedural increase in VT burden with a subsequent gradual decrease of ventricular arrhythmia to only two non-sustained episodes at the end of the follow-up period in case of the second patient. A significant reduction in premature ventricular contractions burden was observed compared to the pre-treatment period. No noticeable deterioration in LV function was noted, nor any adverse effects of radiosurgery associated with the implanted device. CONCLUSION: The early response to STAR can be unpredictable and probably does not reflect the final outcome of irradiation. Close monitoring of patients, especially in the early period after irradiation is crucial to properly handle potentially harmful early reactions to STAR.
- Keywords
- arrhythmia-stereotactic body radiotherapy, electrical storm, radioablation, structural heart disease, ventricular tachycardia,
- Publication type
- Journal Article MeSH