Robotic-Assisted Solutions for Invasive Cardiology, Cardiac Surgery and Routine On-Ward Tasks: A Narrative Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37754828
PubMed Central
PMC10532157
DOI
10.3390/jcdd10090399
PII: jcdd10090399
Knihovny.cz E-zdroje
- Klíčová slova
- CABG, cardiology, congenital heart disease, electrophysiology, interventional cardiology, robotics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Robots are defined as programmable machines that can perform specified tasks. Medical robots are emerging solutions in the field of cardiology leveraging recent technological innovations of control systems, sensors, actuators, and imaging modalities. Robotic platforms are successfully applied for percutaneous coronary intervention, invasive cardiac electrophysiology procedures as well as surgical operations including minimally invasive aortic and mitral valve repair, coronary artery bypass procedures, and structural heart diseases. Furthermore, machines are used as staff-assisting tools to support nurses with repetitive clinical duties i.e., food delivery. High precision and resolution allow for excellent maneuverability, enabling the performance of medical procedures in challenging anatomies that are difficult or impossible using conventional approaches. Moreover, robot-assisted techniques protect operators from occupational hazards, reducing exposure to ionizing radiation, and limiting risk of orthopedic injuries. Novel automatic systems provide advantages for patients, ensuring device stability with optimized utilization of fluoroscopy. The acceptance of robotic technology among healthcare providers as well as patients paves the way for widespread clinical application in the field of cardiovascular medicine. However, incorporation of robotic systems is associated with some disadvantages including high costs of installation and expensive disposable instrumentations, the need for large operating room space, and the necessity of dedicated training for operators due to the challenging learning curve of robotic-assisted interventional systems.
Cardiology Department George Papanikolaou General Hospital 570 10 Thessaloniki Greece
Department of Biochemical Sciences Pomeranian Medical University 70 204 Szczecin Poland
Department of Cardiac Surgery Upper Silesian Heart Center 40 635 Katowice Poland
Department of Gastroenterology Pomeranian Medical University 71 455 Szczecin Poland
InBioSens 31 351 Krakow Poland
Pediatric Cardiology Department Great Ormond Street Hospital London WC1N 3JH UK
Polish American Heart of Poland 47 200 Kedzierzyn Kozle Poland
Zobrazit více v PubMed
Grüntzig A.R., Senning A., Siegenthaler W.E. Nonoperative dilatation of coronary-artery stenosis: Percutaneous transluminal coronary angioplasty. N. Engl. J. Med. 1979;301:61–68. doi: 10.1056/NEJM197907123010201. PubMed DOI
Roguin A., Goldstein J., Bar O., Goldstein J.A. Brain and neck tumors among physicians performing interventional procedures. Am. J. Cardiol. 2013;111:1368–1372. doi: 10.1016/j.amjcard.2012.12.060. PubMed DOI
Ciraj-Bjelac O., Rehani M.M., Sim K.H., Liew H.B., Vano E., Kleiman N.J. Risk for radiation-induced cataract for staff in interventional cardiology: Is there reason for concern? Catheter. Cardiovasc. Interv. 2010;76:826–834. doi: 10.1002/ccd.22670. PubMed DOI
Vano E., Kleiman N.J., Duran A., Rehani M.M., Echeverri D., Cabrera M. Radiation cataract risk in interventional cardiology personnel. Radiat. Res. 2010;174:490–495. doi: 10.1667/RR2207.1. PubMed DOI
Andreassi M.G., Piccaluga E., Gargani L., Sabatino L., Borghini A., Faita F., Bruno R.M., Padovani R., Guagliumi G., Picano E. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: A genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc. Interv. 2015;8:616–627. doi: 10.1016/j.jcin.2014.12.233. PubMed DOI
Goldstein J.A., Balter S., Cowley M., Hodgson J., Klein L.W. Occupational hazards of interventional cardiologists: Prevalence of orthopedic health problems in contemporary practice. Catheter. Cardiovasc. Interv. 2004;63:407–411. doi: 10.1002/ccd.20201. PubMed DOI
Klein L.W., Tra Y., Garratt K.N., Powell W., Lopez-Cruz G., Chambers C., Goldstein J.A. Occupational health hazards of interventional cardiologists in the current decade: Results of the 2014 SCAI membership survey. Catheter. Cardiovasc. Interv. 2015;86:913–924. doi: 10.1002/ccd.25927. PubMed DOI
Beyar R., Wenderow T., Lindner D., Kumar G., Shofti R. Concept, design and pre-clinical studies for remote control percutaneous coronary interventions. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2005;1:340–345. PubMed
Beyar R., Gruberg L., Deleanu D., Roguin A., Almagor Y., Cohen S., Kumar G., Wenderow T. Remote-control percutaneous coronary interventions: Concept, validation, and first-in-humans pilot clinical trial. J. Am. Coll. Cardiol. 2006;47:296–300. doi: 10.1016/j.jacc.2005.09.024. PubMed DOI
Smilowitz N.R., Moses J.W., Sosa F.A., Lerman B., Qureshi Y., Dalton K.E., Privitera L.T., Canone-Weber D., Singh V., Leon M.B., et al. Robotic-Enhanced PCI Compared to the Traditional Manual Approach. J. Invasive Cardiol. 2014;26:318–321. PubMed
Mahmud E., Naghi J., Ang L., Harrison J., Behnamfar O., Pourdjabbar A., Reeves R., Patel M. Demonstration of the Safety and Feasibility of Robotically Assisted Percutaneous Coronary Intervention in Complex Coronary Lesions: Results of the CORA-PCI Study (Complex Robotically Assisted Percutaneous Coronary Intervention) JACC Cardiovasc. Interv. 2017;10:1320–1327. doi: 10.1016/j.jcin.2017.03.050. PubMed DOI
Hirai T., Kearney K., Kataruka A., Gosch K.L., Brandt H., Nicholson W.J., Lombardi W.L., Grantham J.A., Salisbury A.C. Initial report of safety and procedure duration of robotic-assisted chronic total occlusion coronary intervention. Catheter. Cardiovasc. Interv. 2020;95:165–169. doi: 10.1002/ccd.28477. PubMed DOI
Patel T.M., Shah S.C., Soni Y.Y., Radadiya R.C., Patel G.A., Tiwari P.O., Pancholy S.B. Comparison of Robotic Percutaneous Coronary Intervention With Traditional Percutaneous Coronary Intervention: A Propensity Score-Matched Analysis of a Large Cohort. Circ. Cardiovasc. Interv. 2020;13:e008888. doi: 10.1161/CIRCINTERVENTIONS.119.008888. PubMed DOI
Durand E., Sabatier R., Smits P.C., Verheye S., Pereira B., Fajadet J. Evaluation of the R-One robotic system for percutaneous coronary intervention: The R-EVOLUTION study. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2023;18:e1339–e1347. doi: 10.4244/EIJ-D-22-00642. PubMed DOI PMC
Zhai G.Y., Chen Z., Liu R.F., Guo Y.H., Wang J.L., Sun T.N., Xie J., Huang T., Zhou Y.J. First-in-human evaluation of an independently developed Chinese robot-assisted system for percutaneous coronary intervention. J. Geriatr. Cardiol. JGC. 2022;19:743–752. doi: 10.11909/j.issn.1671-5411.2022.10.002. PubMed DOI PMC
Furman S., Robinson G. The use of an intracardiac pacemaker in the correction of total heart block. Surg. Forum. 1958;9:245–248. PubMed
Bassil G., Markowitz S.M., Liu C.F., Thomas G., Ip J.E., Lerman B.B., Cheung J.W. Robotics for catheter ablation of cardiac arrhythmias: Current technologies and practical approaches. J. Cardiovasc. Electrophysiol. 2020;31:739–752. doi: 10.1111/jce.14380. PubMed DOI
Bhaskaran A., Barry M.A., Al Raisi S.I., Chik W., Nguyen D.T., Pouliopoulos J., Nalliah C., Hendricks R., Thomas S., McEwan A.L., et al. Magnetic guidance versus manual control: Comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom. J. Interv. Card. Electrophysiol. 2015;44:1–8. doi: 10.1007/s10840-015-0023-3. PubMed DOI
Pappone C., Vicedomini G., Frigoli E., Giannelli L., Ciaccio C., Baldi M., Zuffada F., Saviano M., Pappone A., Crisà S., et al. Irrigated-tip magnetic catheter ablation of AF: A long-term prospective study in 130 patients. Heart Rhythm. 2011;8:8–15. doi: 10.1016/j.hrthm.2010.09.074. PubMed DOI
Stereotaxis Genesis. [(accessed on 30 August 2023)]. Available online: https://www.stereotaxis.com/products/
Lin C., Pehrson S., Jacobsen P.K., Chen X. Initial experience of a novel mapping system combined with remote magnetic navigation in the catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2017;28:1387–1392. doi: 10.1111/jce.13332. PubMed DOI
Grace A., Willems S., Meyer C., Verma A., Heck P., Zhu M., Shi X., Chou D., Dang L., Scharf C., et al. High-resolution noncontact charge-density mapping of endocardial activation. JCI Insight. 2019;4:e126422. doi: 10.1172/jci.insight.126422. PubMed DOI PMC
Yuan S., Holmqvist F., Kongstad O., Jensen S.M., Wang L., Ljungström E., Hertervig E., Borgquist R. Long-term outcomes of the current remote magnetic catheter navigation technique for ablation of atrial fibrillation. Scand. Cardiovasc. J. SCJ. 2017;51:308–315. doi: 10.1080/14017431.2017.1384566. PubMed DOI
Maurer T., Sohns C., Deiss S., Rottner L., Wohlmuth P., Reißmann B., Heeger C.H., Lemes C., Riedl J., Santoro F., et al. Significant reduction in procedure duration in remote magnetic-guided catheter ablation of atrial fibrillation using the third-generation magnetic navigation system. J. Interv. Card. Electrophysiol. 2017;49:219–226. doi: 10.1007/s10840-017-0261-7. PubMed DOI
Blandino A., Bianchi F., Sibona Masi A., Mazzanti A., D’Ascenzo F., Grossi S., Musumeci G. Outcomes of manual versus remote magnetic navigation for catheter ablation of ventricular tachycardia: A systematic review and updated meta-analysis. Pacing Clin. Electrophysiol. PACE. 2021;44:1102–1114. doi: 10.1111/pace.14231. PubMed DOI
Shauer A., De Vries L.J., Akca F., Palazzolo J., Shurrab M., Lashevsky I., Tiong I., Singh S.M., Newman D., Szili-Torok T., et al. Clinical research: Remote magnetic navigation vs. manually controlled catheter ablation of right ventricular outflow tract arrhythmias: A retrospective study. Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol. 2018;20:ii28–ii32. doi: 10.1093/europace/eux382. PubMed DOI
Kawamura M., Scheinman M.M., Tseng Z.H., Lee B.K., Marcus G.M., Badhwar N. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation. J. Interv. Card. Electrophysiol. 2017;48:35–42. doi: 10.1007/s10840-016-0158-x. PubMed DOI
Qiu X., Zhang N., Luo Q., Liu A., Ji Y., Ye J., Lin C., Ling T., Chen K., Pan W., et al. Remote magnetic navigation facilitates the ablations of frequent ventricular premature complexes originating from the outflow tract and the valve annulus as compared to manual control navigation. Int. J. Cardiol. 2018;267:94–99. doi: 10.1016/j.ijcard.2018.03.105. PubMed DOI
Cronin E.M., Bogun F.M., Maury P., Peichl P., Chen M., Namboodiri N., Aguinaga L., Leite L.R., Al-Khatib S.M., Anter E., et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm. 2020;17:e2–e154. doi: 10.1016/j.hrthm.2019.03.002. PubMed DOI PMC
Guckel D., Niemann S., Ditzhaus M., Molatta S., Bergau L., Fink T., Sciacca V., El Hamriti M., Imnadze G., Steinhauer P., et al. Long-Term Efficacy and Impact on Mortality of Remote Magnetic Navigation Guided Catheter Ablation of Ventricular Arrhythmias. J. Clin. Med. 2021;10:4695. doi: 10.3390/jcm10204695. PubMed DOI PMC
Xie Y., Liu A., Jin Q., Zhang N., Jia K., Lin C., Ling T., Chen K., Pan W., Wu L. Novel strategy of remote magnetic navigation-guided ablation for ventricular arrhythmias from right ventricle outflow tract. Sci. Rep. 2020;10:17839. doi: 10.1038/s41598-020-75032-6. PubMed DOI PMC
Dang S., Jons C., Jacobsen P.K., Pehrson S., Chen X. Feasibility of a novel mapping system combined with remote magnetic navigation for catheter ablation of premature ventricular contractions. J. Arrhythmia. 2019;35:244–251. doi: 10.1002/joa3.12157. PubMed DOI PMC
Di Biase L., Santangeli P., Astudillo V., Conti S., Mohanty P., Mohanty S., Sanchez J.E., Horton R., Thomas B., Burkhardt J.D., et al. Endo-epicardial ablation of ventricular arrhythmias in the left ventricle with the Remote Magnetic Navigation System and the 3.5-mm open irrigated magnetic catheter: Results from a large single-center case-control series. Heart Rhythm. 2010;7:1029–1035. doi: 10.1016/j.hrthm.2010.04.036. PubMed DOI
Burkhardt J.D., Di Biase L., Horton R., Schweikert R.A., Natale A. Remote Navigation and Electroanatomic Mapping in the Pericardial Space. Card. Electrophysiol. Clin. 2010;2:121–125. doi: 10.1016/j.ccep.2009.11.010. PubMed DOI
Miszczyk M., Jadczyk T., Gołba K., Wojakowski W., Wita K., Bednarek J., Blamek S. Clinical Evidence behind Stereotactic Radiotherapy for the Treatment of Ventricular Tachycardia (STAR)-A Comprehensive Review. J. Clin. Med. 2021;10:1238. doi: 10.3390/jcm10061238. PubMed DOI PMC
Zhang D.M., Navara R., Yin T., Szymanski J., Goldsztejn U., Kenkel C., Lang A., Mpoy C., Lipovsky C.E., Qiao Y., et al. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat. Commun. 2021;12:5558. doi: 10.1038/s41467-021-25730-0. PubMed DOI PMC
Refaat M.M., Ballout J.A., Zakka P., Hotait M., Al Feghali K.A., Gheida I.A., Saade C., Hourani M., Geara F., Tabbal M., et al. Swine Atrioventricular Node Ablation Using Stereotactic Radiosurgery: Methods and In Vivo Feasibility Investigation for Catheter-Free Ablation of Cardiac Arrhythmias. J. Am. Heart Assoc. 2017;6:e007193. doi: 10.1161/JAHA.117.007193. PubMed DOI PMC
Lehmann H.I., Graeff C., Simoniello P., Constantinescu A., Takami M., Lugenbiel P., Richter D., Eichhorn A., Prall M., Kaderka R., et al. Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Sci. Rep. 2016;6:38895. doi: 10.1038/srep38895. PubMed DOI PMC
Viani G.A., Gouveia A.G., Pavoni J.F., Louie A.V., Detsky J., Spratt D.E., Moraes F.Y. A Meta-analysis of the Efficacy and Safety of Stereotactic Arrhythmia Radioablation (STAR) in Patients with Refractory Ventricular Tachycardia. Clin. Oncol. 2023;35:611–620. doi: 10.1016/j.clon.2023.04.004. PubMed DOI
A Prospective European Validation Cohort for Stereotactic Therapy of Re-Entrant Tachycardia. [(accessed on 30 August 2023)]. Available online: https://cordis.europa.eu/project/id/945119.
Ferguson J.M., Pitt B., Kuntz A., Granna J., Kavoussi N.L., Nimmagadda N., Barth E.J., Herrell S.D., 3rd, Webster R.J., 3rd Comparing the accuracy of the da Vinci Xi and da Vinci Si for image guidance and automation. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS. 2020;16:1–10. doi: 10.1002/rcs.2149. PubMed DOI PMC
Ojima T., Nakamura M., Hayata K., Kitadani J., Takeuchi A., Yamaue H. Comparison of short-term surgical outcomes using da Vinci S, Si and Xi Surgical System for robotic gastric cancer surgery. Sci. Rep. 2021;11:11063. doi: 10.1038/s41598-021-90741-2. PubMed DOI PMC
Healthcare Market Experts Robotics—The Future of Surgery. [(accessed on 30 August 2023)]. Available online: https://healthcaremarketexperts.com/en/news/joanna-szyman-for-pmr-robotics-the-future-of-surgery/
Cavallaro P., Rhee A.J., Chiang Y., Itagaki S., Seigerman M., Chikwe J. In-hospital mortality and morbidity after robotic coronary artery surgery. J. Cardiothorac. Vasc. Anesth. 2015;29:27–31. doi: 10.1053/j.jvca.2014.03.009. PubMed DOI
Yokoyama Y., Kuno T., Malik A., Briasoulis A. Outcomes of robotic coronary artery bypass versus nonrobotic coronary artery bypass. J. Card. Surg. 2021;36:3187–3192. doi: 10.1111/jocs.15710. PubMed DOI
Lin T.H., Wang C.W., Shen C.H., Chang K.H., Lai C.H., Liu T.J., Chen K.J., Chen Y.W., Lee W.L., Su C.S. Clinical outcomes of multivessel coronary artery disease patients revascularized by robot-assisted vs conventional standard coronary artery bypass graft surgeries in real-world practice. Medicine. 2021;100:e23830. doi: 10.1097/MD.0000000000023830. PubMed DOI PMC
Spanjersberg A., Hoek L., Ottervanger J.P., Nguyen T.Y., Kaplan E., Laurens R., Singh S. Early home discharge after robot-assisted coronary artery bypass grafting. Interact. Cardiovasc. Thorac. Surg. 2022;35:ivac134. doi: 10.1093/icvts/ivac134. PubMed DOI PMC
Mihaljevic T., Jarrett C.M., Gillinov A.M., Williams S.J., DeVilliers P.A., Stewart W.J., Svensson L.G., Sabik J.F., 3rd, Blackstone E.H. Robotic repair of posterior mitral valve prolapse versus conventional approaches: Potential realized. J. Thorac. Cardiovasc. Surg. 2011;141:72–80.e4. doi: 10.1016/j.jtcvs.2010.09.008. PubMed DOI
Wei S., Zhang X., Cui H., Zhang L., Gong Z., Li L., Ren T., Gao C., Jiang S. Comparison of clinical outcomes between robotic and thoracoscopic mitral valve repair. Cardiovasc. Diagn. Ther. 2020;10:1167–1174. doi: 10.21037/cdt-20-197. PubMed DOI PMC
Hawkins R.B., Mehaffey J.H., Mullen M.G., Nifong W.L., Chitwood W.R., Katz M.R., Quader M.A., Kiser A.C., Speir A.M., Ailawadi G. A propensity matched analysis of robotic, minimally invasive, and conventional mitral valve surgery. Heart. 2018;104:1970–1975. doi: 10.1136/heartjnl-2018-313129. PubMed DOI PMC
Barac Y.D., Loungani R.S., Sabulsky R., Zwischenberger B., Gaca J., Carr K., Glower D.D. Robotic versus port-access mitral repair: A propensity score analysis. J. Card. Surg. 2021;36:1219–1225. doi: 10.1111/jocs.15342. PubMed DOI
Smith C.R., Leon M.B., Mack M.J., Miller D.C., Moses J.W., Svensson L.G., Tuzcu E.M., Webb J.G., Fontana G.P., Makkar R.R., et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011;364:2187–2198. doi: 10.1056/NEJMoa1103510. PubMed DOI
Reardon M.J., Van Mieghem N.M., Popma J.J., Kleiman N.S., Søndergaard L., Mumtaz M., Adams D.H., Deeb G.M., Maini B., Gada H., et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017;376:1321–1331. doi: 10.1056/NEJMoa1700456. PubMed DOI
Folliguet T.A., Vanhuyse F., Magnano D., Laborde F. Robotic aortic valve replacement: Case report. Heart Surg. Forum. 2004;7:E551–E553. doi: 10.1532/HSF98.20041025. PubMed DOI
Folliguet T.A., Vanhuyse F., Konstantinos Z., Laborde F. Early experience with robotic aortic valve replacement. Eur. J. Cardio Thorac. Surg. 2005;28:172–173. doi: 10.1016/j.ejcts.2005.03.021. PubMed DOI
Balkhy H.H., Kitahara H. First Human Totally Endoscopic Robotic-Assisted Sutureless Aortic Valve Replacement. Ann. Thorac. Surg. 2020;109:e9–e11. doi: 10.1016/j.athoracsur.2019.04.093. PubMed DOI
Wei L.M., Cook C.C., Hayanga J.W.A., Rankin J.S., Mascio C.E., Badhwar V. Robotic Aortic Valve Replacement: First 50 Cases. Ann. Thorac. Surg. 2022;114:720–726. doi: 10.1016/j.athoracsur.2021.08.036. PubMed DOI
Badhwar V., Wei L.M., Cook C.C., Hayanga J.W.A., Daggubati R., Sengupta P.P., Rankin J.S. Robotic aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2021;161:1753–1759. doi: 10.1016/j.jtcvs.2020.10.078. PubMed DOI
Sun J., Yuan Y., Song Y., Hu Y., Bai X., Chen J., Zhong Q. Early results of totally endoscopic robotic aortic valve replacement: Analysis of 4 cases. J. Cardiothorac. Surg. 2022;17:155. doi: 10.1186/s13019-022-01899-3. PubMed DOI PMC
Hoffman J.I., Kaplan S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002;39:1890–1900. doi: 10.1016/S0735-1097(02)01886-7. PubMed DOI
Stout K.K., Daniels C.J., Aboulhosn J.A., Bozkurt B., Broberg C.S., Colman J.M., Crumb S.R., Dearani J.A., Fuller S., Gurvitz M., et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e698–e800. doi: 10.1161/cir.0000000000000603. PubMed DOI
Kodaira M., Kawamura A., Okamoto K., Kanazawa H., Minakata Y., Murata M., Shimizu H., Fukuda K. Comparison of Clinical Outcomes After Transcatheter vs. Minimally Invasive Cardiac Surgery Closure for Atrial Septal Defect. Circ. J. 2017;81:543–551. doi: 10.1253/circj.CJ-16-0904. PubMed DOI
Balkhy H.H., Nisivaco S., Torregrossa G., Kitahara H., Patel B., Grady K., Coleman C. Multi-spectrum robotic cardiac surgery: Early outcomes. JTCVS Tech. 2022;13:74–82. doi: 10.1016/j.xjtc.2021.12.018. PubMed DOI PMC
Cerny S., Oosterlinck W., Onan B., Singh S., Segers P., Bolcal C., Alhan C., Navarra E., Pettinari M., Van Praet F., et al. Corrigendum: Robotic Cardiac Surgery in Europe: Status 2020. Front. Cardiovasc. Med. 2022;9:870390. doi: 10.3389/fcvm.2022.870390. PubMed DOI PMC
Doulamis I.P., Spartalis E., Machairas N., Schizas D., Patsouras D., Spartalis M., Tsilimigras D.I., Moris D., Iliopoulos D.C., Tzani A., et al. The role of robotics in cardiac surgery: A systematic review. J. Robot. Surg. 2019;13:41–52. doi: 10.1007/s11701-018-0875-5. PubMed DOI
Yanagawa F., Perez M., Bell T., Grim R., Martin J., Ahuja V. Critical Outcomes in Nonrobotic vs Robotic-Assisted Cardiac Surgery. JAMA Surg. 2015;150:771–777. doi: 10.1001/jamasurg.2015.1098. PubMed DOI
Morgan J.A., Peacock J.C., Kohmoto T., Garrido M.J., Schanzer B.M., Kherani A.R., Vigilance D.W., Cheema F.H., Kaplan S., Smith C.R., et al. Robotic techniques improve quality of life in patients undergoing atrial septal defect repair. Ann. Thorac. Surg. 2004;77:1328–1333. doi: 10.1016/j.athoracsur.2003.09.044. PubMed DOI
Deeba S., Aggarwal R., Sains P., Martin S., Athanasiou T., Casula R., Darzi A. Cardiac robotics: A review and St. Mary’s experience. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS. 2006;2:16–20. doi: 10.1002/rcs.76. PubMed DOI
Lewis C.T., Bethencourt D.M., Stephens R.L., Cline J.L., Tyndal C.M. Robotic repair of sinus venosus atrial septal defect with partial anomalous pulmonary venous return and persistent left superior vena cava. Innovations. 2014;9:388–390. doi: 10.1097/imi.0000000000000093. PubMed DOI
Kadan M., Erol G., Kubat E., İnce M.E., Akyol F.B., Karabacak K., Doğancı S., Yıldırım V., Bolcal C., Demirkılıç U. Robotic repair of atrial septal defect with partial pulmonary venous return anomaly: Our 5 year experience. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS. 2022;18:e2395. doi: 10.1002/rcs.2395. PubMed DOI
Sepúlveda E., Ibáñez A., Baeza C., Espíndola M., Sepúlveda G., Maureira M., Uribe J.P., Salas C. Robotic mitral valve repair and closure of atrial septal defect. Report of 13 procedures. Rev. Medica Chile. 2019;147:1303–1307. doi: 10.4067/s0034-98872019001001303. PubMed DOI
Thapmongkol S., Sayasathid J., Methrujpanont J., Namchaisiri J. Beating heart as an alternative for closure of secundum atrial septal defect. Asian Cardiovasc. Thorac. Ann. 2012;20:141–145. doi: 10.1177/0218492311434807. PubMed DOI
Cheng Y., Chen H., Mohl W., Liu X., Si Z. Totally endoscopic congenital heart surgery compared with the traditional heart operation in children. Wien. Klin. Wochenschr. 2013;125:704–708. doi: 10.1007/s00508-013-0438-8. PubMed DOI PMC
Watanabe G., Ishikawa N. Alternative method for cardioplegia delivery during totally endoscopic robotic intracardiac surgery. Ann. Thorac. Surg. 2014;98:1129–1131. doi: 10.1016/j.athoracsur.2014.02.070. PubMed DOI
Yun T., Kim H., Sohn B., Chang H.W., Lim C., Park K.H. Robot-Assisted Repair of Atrial Septal Defect: A Comparison of Beating and Non-Beating Heart Surgery. J. Chest Surg. 2022;55:55–60. doi: 10.5090/jcs.21.111. PubMed DOI PMC
Gao C., Yang M., Wang G., Wang J., Xiao C., Wu Y., Li J. Totally endoscopic robotic atrial septal defect repair on the beating heart. Heart Surg. Forum. 2010;13:E155–E158. doi: 10.1532/HSF98.20091175. PubMed DOI
Zhe Z., Kun H., Xuezeng X., Yunge C., Zengshan M., Huiming G., Liming L., Liang T., Zhiwei W., Hansong S., et al. Totally thoracoscopic versus open surgery for closure of atrial septal defect: Propensity-score matched comparison. Heart Surg. Forum. 2014;17:E227–E231. doi: 10.1532/hsf98.2014382. PubMed DOI
Kitahara H., Okamoto K., Kudo M., Yoshitake A., Ito T., Hayashi K., Inaba Y., Akamatsu Y., Shimizu H. Alternative peripheral perfusion strategies for safe cardiopulmonary bypass in atrial septal defect closure via a right minithoracotomy approach. Gen. Thorac. Cardiovasc. Surg. 2016;64:131–137. doi: 10.1007/s11748-015-0611-2. PubMed DOI
Harky A., Chaplin G., Chan J.S.K., Eriksen P., MacCarthy-Ofosu B., Theologou T., Muir A.D. The Future of Open Heart Surgery in the Era of Robotic and Minimal Surgical Interventions. Heart Lung Circ. 2020;29:49–61. doi: 10.1016/j.hlc.2019.05.170. PubMed DOI
Du Z.D., Hijazi Z.M., Kleinman C.S., Silverman N.H., Larntz K. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: Results of a multicenter nonrandomized trial. J. Am. Coll. Cardiol. 2002;39:1836–1844. doi: 10.1016/S0735-1097(02)01862-4. PubMed DOI
Crawford G.B., Brindis R.G., Krucoff M.W., Mansalis B.P., Carroll J.D. Percutaneous atrial septal occluder devices and cardiac erosion: A review of the literature. Catheter. Cardiovasc. Interv. 2012;80:157–167. doi: 10.1002/ccd.24347. PubMed DOI
Tchantchaleishvili V., Melvin A.L., Ling F.S., Knight P.A. Late erosion of Amplatzer septal occluder device resulting in cardiac tamponade. Interact. Cardiovasc. Thorac. Surg. 2014;19:1074–1076. doi: 10.1093/icvts/ivu271. PubMed DOI
Jalal Z., Hascoet S., Baruteau A.E., Iriart X., Kreitmann B., Boudjemline Y., Thambo J.B. Long-term Complications After Transcatheter Atrial Septal Defect Closure: A Review of the Medical Literature. Can. J. Cardiol. 2016;32:1315.e11–1315.e18. doi: 10.1016/j.cjca.2016.02.068. PubMed DOI
Kadirogullari E., Onan B., Timur B., Birant A., Reyhancan A., Basgoze S., Aydin U. Transcatheter closure vs totally endoscopic robotic surgery for atrial septal defect closure: A single-center experience. J. Card. Surg. 2020;35:764–771. doi: 10.1111/jocs.14456. PubMed DOI
Gao C., Yang M., Wang G., Xiao C., Wang J., Zhao Y. Totally endoscopic robotic ventricular septal defect repair in the adult. J. Thorac. Cardiovasc. Surg. 2012;144:1404–1407. doi: 10.1016/j.jtcvs.2012.01.027. PubMed DOI
Schilling J., Engel A.M., Hassan M., Smith J.M. Robotic excision of atrial myxoma. J. Card. Surg. 2012;27:423–426. doi: 10.1111/j.1540-8191.2012.01478.x. PubMed DOI
Rodriguez E., Cook R.C., Chu M.W.A., Chitwood W.R., Jr. Minimally Invasive Bi-Atrial CryoMaze Operation for Atrial Fibrillation. Oper. Tech. Thorac. Cardiovasc. Surg. 2009;14:208–223. doi: 10.1053/j.optechstcvs.2009.06.009. DOI
Medtronic Hugo. [(accessed on 30 August 2023)]. Available online: https://www.medtronic.com/covidien/en-us/robotic-assisted-surgery/hugo-ras-system.html.
Johnson & Johnson Ottava. [(accessed on 30 August 2023)]. Available online: https://www.careers.jnj.com/robotics.
CMR Surgical Versius. [(accessed on 30 August 2023)]. Available online: https://cmrsurgical.com/
Stryker MAKO SmartRobotics. [(accessed on 30 August 2023)]. Available online: https://www.stryker.com/pl/pl/index.html.
Medicaroid Hinotori Surgical Robot System. [(accessed on 30 August 2023)]. Available online: https://www.medicaroid.com/en/
Titan Medical Enos 2.0. [(accessed on 30 August 2023)]. Available online: https://titanmedicalinc.com/
Moon Surgical Maestro system. [(accessed on 30 August 2023)]. Available online: https://www.moonsurgical.com/
Virtual Incision MIRA. [(accessed on 30 August 2023)]. Available online: https://virtualincision.com/
The Robot Report MIRA Surgical Robot to Be Tested in Space in 2024. [(accessed on 30 August 2023)]. Available online: https://www.therobotreport.com/virtual-incisions-mira-to-be-sent-to-the-iss-2024/
Nawrat Z., Krawczyk D. Robin heart or how to overcome the distance and use a man as an element of the telemanipulator control system. Med. Robot. Rep. 2019–2020;8–9:48–55.
Pittsburgh Business Times Aethon Launches New Robot, Enters Hospitality Market. [(accessed on 30 August 2023)]. Available online: https://www.bizjournals.com/pittsburgh/news/2021/07/13/aethon-launches-new-robot-enters-new-market.html.
Diligent Robotics Moxi. [(accessed on 30 August 2023)]. Available online: https://www.diligentrobots.com/moxi.
Pudu Robotics. [(accessed on 30 August 2023)]. Available online: https://www.pudurobotics.com/
Robotarm My Spoon. [(accessed on 30 August 2023)]. Available online: https://robots.nu/en/robot/my-spoon.
CareMeal Meal Assist Robot. [(accessed on 30 August 2023)]. Available online: https://www.iphoneness.com/smart-robots/caremeal/
Liftware Level. [(accessed on 30 August 2023)]. Available online: https://www.liftware.com/level/
Vitestro. [(accessed on 30 August 2023)]. Available online: https://vitestro.com/vitestro-unveils-autonomous-blood-drawing-device-combining-artificial-intelligence-ultrasound-imaging-and-robotics/
Leipheimer J.M., Balter M.L., Chen A.I., Pantin E.J., Davidovich A.E., Labazzo K.S., Yarmush M.L. First-in-human evaluation of a hand-held automated venipuncture device for rapid venous blood draws. Technology. 2019;7:98–107. doi: 10.1142/S2339547819500067. PubMed DOI PMC
iRobot. [(accessed on 30 August 2023)]. Available online: https://web.archive.org/web/20120103091646/http:/www.irobot.com/sp.cfm?pageid=203.
Defi I.R., Iskandar S., Charismawati S., Turnip A., Novita D. Healthcare Workers’ Point of View on Medical Robotics During COVID-19 Pandemic—A Scoping Review. Int. J. Gen. Med. 2022;15:3767–3777. doi: 10.2147/IJGM.S355734. PubMed DOI PMC
Five Critical Vulnerabilities Found in Aethon TUG Robots. [(accessed on 30 August 2023)]. Available online: https://heimdalsecurity.com/blog/aethon-tug-robots-have-been-found-to-have-critical-vulnerabilities/
Aethon TUG T2. [(accessed on 30 August 2023)]. Available online: https://aethon.com/PDF/TUGAccessedsheet.pdf.
Aethon TUG T3. [(accessed on 30 August 2023)]. Available online: https://aethon.com/wp-content/uploads/2018/03/DatasheetT3_V3.pdf.
Dinsaw. [(accessed on 30 August 2023)]. Available online: https://www.dinsaw.com/
Giraff Robot. [(accessed on 30 August 2023)]. Available online: https://telepresencerobots.com/robots/giraff-telepresence/
Grace Robot. [(accessed on 30 August 2023)]. Available online: https://edition.cnn.com/2021/08/19/asia/grace-hanson-robotics-android-nurse-hnk-spc-intl/
PARO Therapeutic Robot. [(accessed on 30 August 2023)]. Available online: http://www.parorobots.com/users.asp.
Pepper Robot. [(accessed on 30 August 2023)]. Available online: https://support.unitedrobotics.group/en/support/solutions/articles/80000958735-pepper-technical-specifications.
Vañó E., González L., Guibelalde E., Fernández J.M., Ten J.I. Radiation exposure to medical staff in interventional and cardiac radiology. Br. J. Radiol. 1998;71:954–960. doi: 10.1259/bjr.71.849.10195011. PubMed DOI
Delichas M., Psarrakos K., Molyvda-Athanassopoulou E., Giannoglou G., Sioundas A., Hatziioannou K., Papanastassiou E. Radiation exposure to cardiologists performing interventional cardiology procedures. Eur. J. Radiol. 2003;48:268–273. doi: 10.1016/S0720-048X(03)00007-X. PubMed DOI
Roguin A., Goldstein J., Bar O. Brain tumours among interventional cardiologists: A cause for alarm? Report of four new cases from two cities and a review of the literature. EuroIntervention. 2012;7:1081–1086. doi: 10.4244/EIJV7I9A172. PubMed DOI
Vano E., Kleiman N.J., Duran A., Romano-Miller M., Rehani M.M. Radiation-associated lens opacities in catheterization personnel: Results of a survey and direct assessments. J. Vasc. Interv. Radiol. JVIR. 2013;24:197–204. doi: 10.1016/j.jvir.2012.10.016. PubMed DOI
Campbell P.T., Kruse K.R., Kroll C.R., Patterson J.Y., Esposito M.J. The impact of precise robotic lesion length measurement on stent length selection: Ramifications for stent savings. Cardiovasc. Revasc. Med. Incl. Mol. Interv. 2015;16:348–350. doi: 10.1016/j.carrev.2015.06.005. PubMed DOI
Bezerra H.G., Mehanna E., Vetrovec G.W., Costa M.A., Weisz G. Longitudinal Geographic Miss (LGM) in Robotic Assisted Versus Manual Percutaneous Coronary Interventions. J. Interv. Cardiol. 2015;28:449–455. doi: 10.1111/joic.12231. PubMed DOI
Madder R.D., VanOosterhout S.M., Jacoby M.E., Collins J.S., Borgman A.S., Mulder A.N., Elmore M.A., Campbell J.L., McNamara R.F., Wohns D.H. Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: An early exploration into the feasibility of telestenting (the REMOTE-PCI study) EuroIntervention. 2017;12:1569–1576. doi: 10.4244/EIJ-D-16-00363. PubMed DOI
Bai R., Di Biase L., Valderrabano M., Lorgat F., Mlcochova H., Tilz R., Meyerfeldt U., Hranitzky P.M., Wazni O., Kanagaratnam P., et al. Worldwide experience with the robotic navigation system in catheter ablation of atrial fibrillation: Methodology, efficacy and safety. J. Cardiovasc. Electrophysiol. 2012;23:820–826. doi: 10.1111/j.1540-8167.2012.02316.x. PubMed DOI
Schachner T., Bonaros N., Wiedemann D., Weidinger F., Feuchtner G., Friedrich G., Laufer G., Bonatti J. Training surgeons to perform robotically assisted totally endoscopic coronary surgery. Ann. Thorac. Surg. 2009;88:523–527. doi: 10.1016/j.athoracsur.2009.04.089. PubMed DOI