Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29059169
DOI
10.1038/onc.2017.367
PII: onc2017367
Knihovny.cz E-zdroje
- MeSH
- genom lidský * MeSH
- hypoglykemika farmakologie MeSH
- lidé MeSH
- metformin farmakologie MeSH
- metylace DNA účinky léků MeSH
- mitochondrie účinky léků metabolismus patologie MeSH
- myši MeSH
- nádorové biomarkery MeSH
- nádorové buňky kultivované MeSH
- nádory prsu farmakoterapie enzymologie patologie MeSH
- nádory tračníku farmakoterapie enzymologie patologie MeSH
- následné studie MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- respirační komplex I metabolismus MeSH
- S-adenosylhomocystein metabolismus MeSH
- S-adenosylmethionin metabolismus MeSH
- uhlík metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hypoglykemika MeSH
- metformin MeSH
- nádorové biomarkery MeSH
- proteinkinasy aktivované AMP MeSH
- respirační komplex I MeSH
- S-adenosylhomocystein MeSH
- S-adenosylmethionin MeSH
- uhlík MeSH
The anti-diabetic biguanide metformin may exert health-promoting effects via metabolic regulation of the epigenome. Here we show that metformin promotes global DNA methylation in non-cancerous, cancer-prone and metastatic cancer cells by decreasing S-adenosylhomocysteine (SAH), a strong feedback inhibitor of S-adenosylmethionine (SAM)-dependent DNA methyltransferases, while promoting the accumulation of SAM, the universal methyl donor for cellular methylation. Using metformin and a mitochondria/complex I (mCI)-targeted analog of metformin (norMitoMet) in experimental pairs of wild-type and AMP-activated protein kinase (AMPK)-, serine hydroxymethyltransferase 2 (SHMT2)- and mCI-null cells, we provide evidence that metformin increases the SAM:SAH ratio-related methylation capacity by targeting the coupling between serine mitochondrial one-carbon flux and CI activity. By increasing the contribution of one-carbon units to the SAM from folate stores while decreasing SAH in response to AMPK-sensed energetic crisis, metformin can operate as a metabolo-epigenetic regulator capable of reprogramming one of the key conduits linking cellular metabolism to the DNA methylation machinery.
Girona Biomedical Research Institute Girona Catalonia Spain
INSERM U1016 Institut Cochin Paris France
Institute of Biotechnology Czech Academy of Sciences Prague West Czech Republic
Institute of Chemical Technology Prague Czech Republic
ProCURE Metabolism and Cancer Group Catalan Institute of Oncology Girona Catalonia Spain
School of Medical Science Griffith University Southport Queensland Australia
The Campus of International Excellence Southern Catalonia Tarragona Spain
Zobrazit více v PubMed
Biochem J. 2014 Feb 15;458(1):41-56 PubMed
Cell Metab. 2014 Dec 2;20(6):953-66 PubMed
J Clin Invest. 2013 Sep;123(9):3693-700 PubMed
Genome Res. 2014 Dec;24(12):2059-65 PubMed
Nat Rev Cancer. 2016 Nov;16(11):694-707 PubMed
Stem Cell Reports. 2016 Mar 8;6(3):273-83 PubMed
Trends Cell Biol. 2017 Sep;27(9):645-657 PubMed
Biochem J. 2000 Jun 15;348 Pt 3:607-14 PubMed
Cell Metab. 2016 Oct 11;24(4):542-554 PubMed
FEBS J. 2016 Oct;283(20):3695-3704 PubMed
J Mol Med (Berl). 2016 Dec;94(12 ):1397-1409 PubMed
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17773-8 PubMed
Biochem J. 2016 Jan 15;473(2):189-99 PubMed
Nat Commun. 2015 Dec 21;6:10221 PubMed
Sci Adv. 2016 Oct 28;2(10 ):e1601273 PubMed
J Clin Invest. 2013 Sep;123(9):3652-8 PubMed
Oncoscience. 2016 Jan 05;2(12 ):958-967 PubMed
Anal Bioanal Chem. 2015 Mar;407(9):2423-31 PubMed
Mol Cancer Ther. 2016 Dec;15(12 ):2875-2886 PubMed
Nature. 2013 Feb 14;494(7436):256-60 PubMed
Clin Sci (Lond). 2012 Mar;122(6):253-70 PubMed
Cell. 2009 Aug 21;138(4):645-659 PubMed
Cancer Res. 2014 Dec 15;74(24):7521-33 PubMed
Oncotarget. 2016 Aug 16;7(33):52974-52992 PubMed
Cell. 2008 May 16;133(4):704-15 PubMed
Nature. 2017 Apr 19;544(7650):372-376 PubMed
Aging (Albany NY). 2012 Jul;4(7):480-98 PubMed
Cell Metab. 2017 Mar 7;25(3):544-558 PubMed
Biochem J. 2008 Jun 1;412(2):211-21 PubMed
Sci Rep. 2016 Jan 05;6:18673 PubMed
Br J Cancer. 2017 Jun 6;116(12 ):1499-1504 PubMed
Nat Chem Biol. 2013 May;9(5):300-6 PubMed
Cell Metab. 2016 Jun 14;23 (6):1060-1065 PubMed
J Cell Biol. 2016 Aug 1;214(3):249-57 PubMed
Sci Adv. 2016 Jul 29;2(7):e1600584 PubMed
Nat Rev Cancer. 2013 Aug;13(8):572-83 PubMed
Cell Metab. 2016 Nov 8;24(5):728-739 PubMed
Oncogene. 2017 Apr 27;36(17 ):2345-2354 PubMed
Oncotarget. 2016 Mar 15;7(11):11959-71 PubMed
Nat Commun. 2015 Jun 24;6:7505 PubMed
BMC Biol. 2016 Aug 09;14 :65 PubMed
Cancer Res. 2016 Jul 1;76(13):3904-15 PubMed
Cell. 2016 Aug 11;166(4):802-821 PubMed
Oncotarget. 2014 Jun 30;5(12):3970-82 PubMed
Cell. 2013 Mar 28;153(1):228-39 PubMed
Genome Res. 2012 Dec;22(12):2339-55 PubMed
Aging Cell. 2013 Apr;12(2):247-56 PubMed
Elife. 2014 May 13;3:e02242 PubMed
Exp Cell Res. 1999 Nov 1;252(2):273-80 PubMed
Biomed Res Int. 2015;2015:131547 PubMed
J Nutr. 2001 Nov;131(11):2811-8 PubMed
Cell Cycle. 2010 Sep 15;9(18):3807-14 PubMed
Cell Metab. 2015 Jan 6;21(1):81-94 PubMed
Clin Epigenetics. 2011 Aug;2(2):315-30 PubMed
Am J Physiol Cell Physiol. 2011 Dec;301(6):C1307-15 PubMed
Mol Cell Biol. 2006 Jul;26(14 ):5336-47 PubMed