Swedish Alzheimer's disease variant perturbs activity of retrograde molecular motors and causes widespread derangement of axonal transport pathways

. 2024 Apr ; 300 (4) : 107137. [epub] 20240305

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38447793
Odkazy

PubMed 38447793
PubMed Central PMC10997842
DOI 10.1016/j.jbc.2024.107137
PII: S0021-9258(24)01632-6
Knihovny.cz E-zdroje

Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.

Instituto de Investigación en Biomedicina de Buenos Aires Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina

Instituto de Investigación en Biomedicina de Buenos Aires Partner Institute of the Max Planck Society Buenos Aires Argentina

PsychoGenics Paramus New Jersey USA

Translational Ageing and Neuroscience Program Centre for Translational Medicine International Clinical Research Centre St Anne's University Hospital Brno Czech Republic

Translational Ageing and Neuroscience Program Centre for Translational Medicine International Clinical Research Centre St Anne's University Hospital Brno Czech Republic; Faculty of Medicine Department of Biology Masaryk University Brno Czech Republic; School of Cardiovascular and Metabolic Medicine and Sciences King's College London London UK

Translational Ageing and Neuroscience Program Centre for Translational Medicine International Clinical Research Centre St Anne's University Hospital Brno Czech Republic; Institute for Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacký University Olomouc Olomouc Czech Republic

Translational Ageing and Neuroscience Program Centre for Translational Medicine International Clinical Research Centre St Anne's University Hospital Brno Czech Republic; Institute for Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacký University Olomouc Olomouc Czech Republic; Division of Neurology University Medical Centre Ljubljana Slovenia; Department of Neurosciences Mayo Clinic Rochester Minnesota USA

Translational Ageing and Neuroscience Program Centre for Translational Medicine International Clinical Research Centre St Anne's University Hospital Brno Czech Republic; PsychoGenics Paramus New Jersey USA

Zobrazit více v PubMed

Schubert D., Schroeder R., LaCorbiere M., Saitoh T., Cole G. Amyloid beta protein precursor is possibly a heparan sulfate proteoglycan core protein. Science. 1988;241:223–226. PubMed

Masters C.L., Selkoe D.J. Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012;2:a006262. PubMed PMC

Lanoiselee H.M., Nicolas G., Wallon D., Rovelet-Lecrux A., Lacour M., Rousseau S., et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med. 2017;14 PubMed PMC

Mullan M., Crawford F., Axelman K., Houlden H., Lilius L., Winblad B., et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat. Genet. 1992;1:345–347. PubMed

Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A.Y., Seubert P., et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature. 1992;360:672–674. PubMed

De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998;391:387–390. PubMed

Goate A., Chartier-Harlin M.C., Mullan M., Brown J., Crawford F., Fidani L., et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991;349:704–706. PubMed

Suzuki N., Cheung T.T., Cai X.D., Odaka A., Otvos L., Eckman C., et al. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994;264:1336–1340. PubMed

Hardy J.A., Higgins G.A. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256:184–185. PubMed

Kwart D., Scheckel C., Murphy E.A., Paquet D., Duffield M., Fak J., et al. A Large panel of Isogenic APP and PSEN1 mutant human iPSC neurons reveals Shared endosomal abnormalities mediated by APP beta-CTFs, not Abeta. Neuron. 2019;104:256–270.e255. PubMed

Lorenzen A., Samosh J., Vandewark K., Anborgh P.H., Seah C., Magalhaes A.C., et al. Rapid and direct transport of cell surface APP to the lysosome defines a novel selective pathway. Mol. Brain. 2010;3:11. PubMed PMC

Terry R.D. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 1996;55:1023–1025. PubMed

Stokin G.B., Goldstein L.S. Axonal transport and Alzheimer's disease. Annu. Rev. Biochem. 2006;75:607–627. PubMed

Koo E.H., Sisodia S.S., Archer D.R., Martin L.J., Weidemann A., Beyreuther K., et al. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. U. S. A. 1990;87:1561–1565. PubMed PMC

Bhattacharyya R., Black S.E., Lotlikar M.S., Fenn R.H., Jorfi M., Kovacs D.M., et al. Axonal generation of amyloid-beta from palmitoylated APP in mitochondria-associated endoplasmic reticulum membranes. Cell Rep. 2021;35 PubMed PMC

Lazarov O., Morfini G.A., Lee E.B., Farah M.H., Szodorai A., DeBoer S.R., et al. Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J. Neurosci. 2005;25:2386–2395. PubMed PMC

Das U., Wang L., Ganguly A., Saikia J.M., Wagner S.L., Koo E.H., et al. Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nat. Neurosci. 2016;19:55–64. PubMed PMC

Kamal A., Almenar-Queralt A., LeBlanc J.F., Roberts E.A., Goldstein L.S. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature. 2001;414:643–648. PubMed

Kamal A., Stokin G.B., Yang Z., Xia C.H., Goldstein L.S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron. 2000;28:449–459. PubMed

Szodorai A., Kuan Y.H., Hunzelmann S., Engel U., Sakane A., Sasaki T., et al. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J. Neurosci. 2009;29:14534–14544. PubMed PMC

McKenney R.J., Huynh W., Tanenbaum M.E., Bhabha G., Vale R.D. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science. 2014;345:337–341. PubMed PMC

Kimura N., Samura E., Suzuki K., Okabayashi S., Shimozawa N., Yasutomi Y. Dynein dysfunction reproduces age-dependent Retromer deficiency: concomitant disruption of retrograde trafficking is required for Alteration in beta-amyloid precursor protein Metabolism. Am. J. Pathol. 2016;186:1952–1966. PubMed

Kimura N., Inoue M., Okabayashi S., Ono F., Negishi T. Dynein dysfunction induces endocytic pathology accompanied by an increase in Rab GTPases: a potential mechanism underlying age-dependent endocytic dysfunction. J. Biol. Chem. 2009;284:31291–31302. PubMed PMC

Chen X.Q., Das U., Park G., Mobley W.C. Normal levels of KIF5 but reduced KLC1 levels in both Alzheimer disease and Alzheimer disease in Down syndrome: evidence suggesting defects in anterograde transport. Alzheimers Res. Ther. 2021;13:59. PubMed PMC

Morel M., Heraud C., Nicaise C., Suain V., Brion J.P. Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer's disease: implications for axoplasmic transport. Acta Neuropathol. 2012;123:71–84. PubMed

Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S.G., Croteau D.L., et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019;15:565–581. PubMed

Ateh D.D., Hussain I.K., Mustafa A.H., Price K.M., Gulati R., Nickols C.D., et al. Dynein-dynactin complex subunits are differentially localized in brain and spinal cord, with selective involvement in pathological features of neurodegenerative disease. Neuropathol. Appl. Neurobiol. 2008;34:88–94. PubMed

Farrer M.J., Hulihan M.M., Kachergus J.M., Dächsel J.C., Stoessl A.J., Grantier L.L., et al. DCTN1 mutations in Perry syndrome. Nat. Genet. 2009;41:163–165. PubMed PMC

Zhao C., Takita J., Tanaka Y., Setou M., Nakagawa T., Takeda S., et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001;105:587–597. PubMed

Nicolas A., Kenna K.P., Renton A.E., Ticozzi N., Faghri F., Chia R., et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron. 2018;97:1268–1283.e1266. PubMed PMC

Kimura N., Okabayashi S., Ono F. Dynein dysfunction disrupts intracellular vesicle trafficking bidirectionally and perturbs synaptic vesicle docking via endocytic disturbances a potential mechanism underlying age-dependent impairment of cognitive function. Am. J. Pathol. 2012;180:550–561. PubMed

Gunawardena S., Goldstein L.S. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron. 2001;32:389–401. PubMed

Kimura N., Imamura O., Ono F., Terao K. Aging attenuates dynactin-dynein interaction: down-regulation of dynein causes accumulation of endogenous tau and amyloid precursor protein in human neuroblastoma cells. J. Neurosci. Res. 2007;85:2909–2916. PubMed

Stokin G.B., Lillo C., Falzone T.L., Brusch R.G., Rockenstein E., Mount S.L., et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005;307:1282–1288. PubMed

Lazarov O., Morfini G.A., Pigino G., Gadadhar A., Chen X., Robinson J., et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1. J. Neurosci. 2007;27:7011–7020. PubMed PMC

Salehi A., Delcroix J.D., Belichenko P.V., Zhan K., Wu C., Valletta J.S., et al. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron. 2006;51:29–42. PubMed

Rodrigues E.M., Weissmiller A.M., Goldstein L.S. Enhanced beta-secretase processing alters APP axonal transport and leads to axonal defects. Hum. Mol. Genet. 2012;21:4587–4601. PubMed PMC

Pozo Devoto V.M., Lacovich V., Feole M., Bhat P., Chovan J., Čarna M., et al. Unraveling axonal mechanisms of traumatic brain injury. Acta Neuropathol. Commun. 2022;10:140. PubMed PMC

Holubiec M.I., Alloatti M., Bianchelli J., Greloni F., Arnaiz C., Gonzalez Prinz M., et al. Mitochondrial vulnerability to oxidation in human brain organoids modelling Alzheimer's disease. Free Radic. Biol. Med. 2023;208:394–401. PubMed

Vassar R., Bennett B.D., Babu-Khan S., Kahn S., Mendiaz E.A., Denis P., et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286:735–741. PubMed

Willuweit A., Velden J., Godemann R., Manook A., Jetzek F., Tintrup H., et al. Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimer's disease. PLoS One. 2009;4 PubMed PMC

Waterman-Storer C.M., Karki S.B., Kuznetsov S.A., Tabb J.S., Weiss D.G., Langford G.M., et al. The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc. Natl. Acad. Sci. U. S. A. 1997;94:12180–12185. PubMed PMC

Chowdary P.D., Che D.L., Kaplan L., Chen O., Pu K., Bawendi M., et al. Nanoparticle-assisted optical tethering of endosomes reveals the cooperative function of dyneins in retrograde axonal transport. Sci. Rep. 2015;5 PubMed PMC

Olenick M.A., Dominguez R., Holzbaur E.L.F. Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons. J. Cell Biol. 2019;218:220–233. PubMed PMC

Terenzio M., Di Pizio A., Rishal I., Marvaldi L., Di Matteo P., Kawaguchi R., et al. DYNLRB1 is essential for dynein mediated transport and neuronal survival. Neurobiol. Dis. 2020;140 PubMed PMC

Xu W., Weissmiller A.M., White J.A., Fang F., Wang X., Wu Y., et al. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J. Clin. Invest. 2016;126:1815–1833. PubMed PMC

Im E., Jiang Y., Stavrides P.H., Darji S., Erdjument-Bromage H., Neubert T.A., et al. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr(682)-phosphorylated APP betaCTF. Sci. Adv. 2023;9 PubMed PMC

Prowse E.N.P., Chaudhary A.R., Sharon D., Hendricks A.G. Huntingtin S421 phosphorylation increases kinesin and dynein engagement on early endosomes and lysosomes. Biophys. J. 2023;122:1168–1184. PubMed PMC

Nakata T., Hirokawa N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 1995;131:1039–1053. PubMed PMC

Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., et al. Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. U. S. A. 2006;103:11172–11177. PubMed PMC

Cataldo A.M., Hamilton D.J., Nixon R.A. Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Res. 1994;640:68–80. PubMed

Mutvei A.P., Nagiec M.J., Blenis J. Balancing lysosome abundance in health and disease. Nat. Cell Biol. 2023;25:1254–1264. PubMed

Stoorvogel W., Strous G.J., Geuze H.J., Oorschot V., Schwartz A.L. Late endosomes derive from early endosomes by maturation. Cell. 1991;65:417–427. PubMed

Luzio J.P., Pryor P.R., Bright N.A. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol. 2007;8:622–632. PubMed

Wang Z.X., Tan L., Yu J.T. Axonal transport defects in Alzheimer's disease. Mol. Neurobiol. 2015;51:1309–1321. PubMed

Stokin G.B., Almenar-Queralt A., Gunawardena S., Rodrigues E.M., Falzone T., Kim J., et al. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides. Hum. Mol. Genet. 2008;17:3474–3486. PubMed PMC

Bearer E.L., Manifold-Wheeler B.C., Medina C.S., Gonzales A.G., Chaves F.L., Jacobs R.E. Alterations of functional circuitry in aging brain and the impact of mutated APP expression. Neurobiol. Aging. 2018;70:276–290. PubMed PMC

Lee J.H., Yang D.S., Goulbourne C.N., Im E., Stavrides P., Pensalfini A., et al. Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat. Neurosci. 2022;25:688–701. PubMed PMC

Lie P.P.Y., Yoo L., Goulbourne C.N., Berg M.J., Stavrides P., Huo C., et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca(2+) efflux and disrupted by PSEN1 loss of function. Sci. Adv. 2022;8:eabj5716. PubMed PMC

Hoang H.T., Schlager M.A., Carter A.P., Bullock S.L. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E1597–E1606. PubMed PMC

Boecker C.A., Goldsmith J., Dou D., Cajka G.G., Holzbaur E.L.F. Increased LRRK2 kinase activity alters neuronal autophagy by disrupting the axonal transport of autophagosomes. Curr. Biol. 2021;31:2140–2154.e2146. PubMed PMC

Weaver C., Leidel C., Szpankowski L., Farley N.M., Shubeita G.T., Goldstein L.S.B. Endogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein. Traffic. 2013;14:295–308. PubMed

Banerjee R., Chakraborty P., Yu M.C., Gunawardena S. A stop or go switch: glycogen synthase kinase 3beta phosphorylation of the kinesin 1 motor domain at Ser314 halts motility without detaching from microtubules. Development. 2021;148 PubMed PMC

Morfini G., Szebenyi G., Elluru R., Ratner N., Brady S.T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 2002;21:281–293. PubMed PMC

Cason S.E., Carman P.J., Van Duyne C., Goldsmith J., Dominguez R., Holzbaur E.L.F. Sequential dynein effectors regulate axonal autophagosome motility in a maturation-dependent pathway. J. Cell Biol. 2021;220 PubMed PMC

Kim S., Sato Y., Mohan P.S., Peterhoff C., Pensalfini A., Rigoglioso A., et al. Evidence that the rab5 effector APPL1 mediates APP-betaCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease. Mol. Psychiatry. 2016;21:707–716. PubMed PMC

Jorda-Siquier T., Petrel M., Kouskoff V., Smailovic U., Cordelières F., Frykman S., et al. APP accumulates with presynaptic proteins around amyloid plaques: a role for presynaptic mechanisms in Alzheimer's disease? Alzheimers Dement. 2022;18:2099–2116. PubMed PMC

Stokin G.B., Goldstein L.S. Linking molecular motors to Alzheimer's disease. J. Physiol. Paris. 2006;99:193–200. PubMed

Lomoio S., Willen R., Kim W., Ho K.Z., Robinson E.K., Prokopenko D., et al. Gga3 deletion and a GGA3 rare variant associated with late onset Alzheimer's disease trigger BACE1 accumulation in axonal swellings. Sci. Transl Med. 2020;12 PubMed PMC

Lacovich V., Espindola S.L., Alloatti M., Pozo Devoto V., Cromberg L.E., Čarná M.E., et al. Tau Isoforms Imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 2017;37:58–69. PubMed PMC

Mellone M., Kestoras D., Andrews M.R., Dassie E., Crowther R.A., Stokin G.B., et al. Tau pathology is present in vivo and develops in vitro in sensory neurons from human P301S tau transgenic mice: a system for screening drugs against tauopathies. J. Neurosci. 2013;33:18175–18189. PubMed PMC

Tesseur I., Van Dorpe J., Bruynseels K., Bronfman F., Sciot R., Van Lommel A., et al. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am. J. Pathol. 2000;157:1495–1510. PubMed PMC

Hurd D.D., Saxton W.M. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics. 1996;144:1075–1085. PubMed PMC

Morotz G.M., Glennon E.B., Greig J., Lau D.H.W., Bhembre N., Mattedi F., et al. Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein. Acta Neuropathol. Commun. 2019;7:200. PubMed PMC

Berth S.H., Lloyd T.E. Disruption of axonal transport in neurodegeneration. J. Clin. Invest. 2023;133 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...