Developmental deletion of amyloid precursor protein precludes transcriptional and proteomic responses to brain injury

. 2025 Apr ; 21 (4) : e70093.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40271543

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Funds
CZ.02.1.01/0.0/0.0/17_043/0009632 European Union's Horizon 2020
CZ.02.1.01/0.0/0.0/15_003/0000492 CETOCOEN EXCELLENCE
5I01BX003671 VA Merit
1IK6BX006318 VA Research Career Scientist Award
21-27329X Czech Science Foundation (GAČR)
LX22NPO5107 (MEYS) European Union: Next Generation EU - Project National Institute for Neurological Research

INTRODUCTION: Amyloid precursor protein (APP) undergoes striking changes following traumatic brain injury (TBI). Considering its role in the control of gene expression, we investigated whether APP regulates transcription and translation following TBI. METHODS: We assessed brain morphology (n = 4-9 mice/group), transcriptome (n = 3 mice/group), proteome (n = 3 mice/group), and behavior (n = 17-27 mice/group) of wild-type (WT) and APP knock-out (KO) mice either untreated or 10-weeks following TBI. RESULTS: After TBI, WT mice displayed transcriptional programs consistent with late stages of brain repair, hub genes were predicted to impact translation and brain proteome showed subtle changes. APP KO mice largely replicated this transcriptional repertoire, but showed no transcriptional nor translational response to TBI. DISCUSSION: The similarities between WT mice following TBI and APP KO mice suggest that developmental APP deficiency induces a condition reminiscent of late stages of brain repair, hampering the control of gene expression in response to injury. HIGHLIGHTS: 10-weeks after TBI, brains exhibit transcriptional profiles consistent with late stage of brain repair. Developmental APP deficiency maintains brains perpetually in an immature state akin to late stages of brain repair. APP responds to TBI by changes in gene expression at a transcriptional and translational level. APP deficiency precludes molecular brain changes in response to TBI.

Zobrazit více v PubMed

Dyrks T, Weidemann A, Multhaup G, et al. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease. EMBO J. 1988;7:949‐957. doi:10.1002/j.1460-2075.1988.tb02900.x PubMed DOI PMC

Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F. Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease‐associated amyloid beta protein precursor. Proc Natl Acad Sci U S A. 1992;89:10758‐10762. doi:10.1073/pnas.89.22.10758 PubMed DOI PMC

Wasco W, Gurubhagavatula S, Paradis MD, et al. Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid beta protein precursor. Nat Genet. 1993;5:95‐100. doi:10.1038/ng0993-95 PubMed DOI

Rosen DR, Martin‐Morris L, Luo LQ, White K. A Drosophila gene encoding a protein resembling the human beta‐amyloid protein precursor. Proc Natl Acad Sci U S A. 1989;86:2478‐2482. doi:10.1073/pnas.86.7.2478 PubMed DOI PMC

Daigle I, Li C. apl‐1, a Caenorhabditis elegans gene encoding a protein related to the human beta‐amyloid protein precursor. Proc Natl Acad Sci U S A. 1993;90:12045‐12049. doi:10.1073/pnas.90.24.12045 PubMed DOI PMC

Musa A, Lehrach H, Russo VA. Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Dev Genes Evol. 2001;211:563‐567. doi:10.1007/s00427-001-0189-9 PubMed DOI

Zheng H, Jiang M, Trumbauer ME, et al. beta‐Amyloid precursor protein‐deficient mice show reactive gliosis and decreased locomotor activity. Cell. 1995;81:525‐531. doi:10.1016/0092-8674(95)90073-x PubMed DOI

Muller U, Cristina N, Li ZW, et al. Behavioral and anatomical deficits in mice homozygous for a modified beta‐amyloid precursor protein gene. Cell. 1994;79:755‐765. doi:10.1016/0092-8674(94)90066-3 PubMed DOI

Heber S, Herms J, Gajic V, et al. Mice with combined gene knock‐outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci. 2000;20:7951‐7963. PubMed PMC

von Koch C, Zheng H, Chen H, et al. Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol Aging. 1997;18:661‐669. doi:10.1016/s0197-4580(97)00151-6 PubMed DOI

Lee SH, Kang J, Ho A, Watanabe H, Bolshakov VY, Shen J. APP family regulates neuronal excitability and synaptic plasticity but not neuronal survival. Neuron. 2020;108:676‐690. e678. doi:10.1016/j.neuron.2020.08.011 PubMed DOI PMC

Steubler V, Erdinger S, Back MK, et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism‐like phenotype. EMBO J. 2021;40:e107471. doi:10.15252/embj.2020107471 PubMed DOI PMC

Schubert W, Prior R, Weidemann A, et al. Localization of Alzheimer beta A4 amyloid precursor protein at central and peripheral synaptic sites. Brain Res. 1991;563:184‐194. doi:10.1016/0006-8993(91)91532-6 PubMed DOI

Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted beta‐amyloid‐precursor protein. Nature. 1996;379:74‐78. doi:10.1038/379074a0 PubMed DOI

Chapman PF, White GL, Jones MW, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci. 1999;2:271‐276. doi:10.1038/6374 PubMed DOI

Marik SA, Olsen O, Tessier‐Lavigne M, Gilbert CD. Physiological role for amyloid precursor protein in adult experience‐dependent plasticity. Proc Natl Acad Sci U S A. 2016;113:7912‐7917. doi:10.1073/pnas.1604299113 PubMed DOI PMC

Mehr A, Hick M, Ludewig S, et al. Lack of APP and APLP2 in GABAergic forebrain neurons impairs synaptic plasticity and cognition. Cereb Cortex. 2020;30:4044‐4063. doi:10.1093/cercor/bhaa025 PubMed DOI

Roch JM, Masliah E, Roch‐Levecq AC, et al. Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid beta/A4 protein precursor. Proc Natl Acad Sci U S A. 1994;91:7450‐7454. doi:10.1073/pnas.91.16.7450 PubMed DOI PMC

Corrigan F, Pham CL, Vink R, et al. The neuroprotective domains of the amyloid precursor protein, in traumatic brain injury, are located in the two growth factor domains. Brain Res. 2011;1378:137‐143. doi:10.1016/j.brainres.2010.12.077 PubMed DOI

Plummer SL, Corrigan F, Thornton E, et al. The amyloid precursor protein derivative, APP96‐110, is efficacious following intravenous administration after traumatic brain injury. PLoS One. 2018;13:e0190449. doi:10.1371/journal.pone.0190449 PubMed DOI PMC

Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The neuroprotective properties of the amyloid precursor protein following traumatic brain injury. Aging Dis. 2016;7:163‐179. doi:10.14336/AD.2015.0907 PubMed DOI PMC

Guénette SY, Chen J, Jondro PD, Tanzi RE. Association of a novel human FE65‐like protein with the cytoplasmic domain of the beta‐amyloid precursor protein. Proc Natl Acad Sci U S A. 1996;93:10832‐10837. doi:10.1073/pnas.93.20.10832 PubMed DOI PMC

Cao X, Südhof TC. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science. 2001;293:115‐120. doi:10.1126/science.1058783 PubMed DOI

Kimberly WT, Zheng JB, Guénette SY, Selkoe DJ. The intracellular domain of the beta‐amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch‐like manner. J Biol Chem. 2001;276:40288‐40292. doi:10.1074/jbc.C100447200 PubMed DOI

Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG. Exchange of N‐CoR corepressor and Tip60 coactivator complexes links gene expression by NF‐kappaB and beta‐amyloid precursor protein. Cell. 2002;110:55‐67. doi:10.1016/s0092-8674(02)00809-7 PubMed DOI

Cha HJ, Shen J, Kang J. Regulation of gene expression by the APP family in the adult cerebral cortex. Sci Rep. 2022;12:66. doi:10.1038/s41598-021-04027-8 PubMed DOI PMC

Nakagawa Y, Nakamura M, Mcintosh TK, et al. Traumatic brain injury in young, amyloid‐beta peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished Abeta deposition during aging. J Comp Neurol. 1999;411:390‐398. PubMed

Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. Beta‐amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993;160:139‐144. doi:10.1016/0304-3940(93)90398-5 PubMed DOI

Pozo Devoto VM, Lacovich V, Feole M, et al. Unraveling axonal mechanisms of traumatic brain injury. Acta Neuropathol Commun. 2022;10:140. doi:10.1186/s40478-022-01414-8 PubMed DOI PMC

Chen X, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long‐term accumulation of amyloid‐beta, beta‐secretase, presenilin‐1, and caspase‐3 in damaged axons following brain trauma. Am J Pathol. 2004;165:357‐371. doi:10.1016/s0002-9440(10)63303-2 PubMed DOI PMC

Richter V, Muche R, Mayer B. How much confidence do we need in animal experiments? Statistical assumptions in sample size estimation. J Appl Anim Welf Sci. 2018;21:325‐333. doi:10.1080/10888705.2018.1423972 PubMed DOI

Niesman IR, Schilling JM, Shapiro LA, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39. doi:10.1186/1742-2094-11-39 PubMed DOI PMC

Carlson CG, Rutter J, Bledsoe C, et al. A simple protocol for assessing inter‐trial and inter‐examiner reliability for two noninvasive measures of limb muscle strength. J Neurosci Methods. 2010;186:226‐230. doi:10.1016/j.jneumeth.2009.11.006 PubMed DOI

Walsh RN, Cummins RA. The open‐field test: a critical review. Psychol Bull. 1976;83:482‐504. PubMed

Limbäck‐Stokin K, Korzus E, Nagaoka‐Yasuda R, Mayford M. Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci. 2004;24:10858‐10867. doi:10.1523/JNEUROSCI.1022-04.2004 PubMed DOI PMC

Wang H, Zhou P, Zhu W, Wang F. De novo comparative transcriptome analysis of genes differentially expressed in the scion of homografted and heterografted tomato seedlings. Sci Rep. 2019;9:20240. doi:10.1038/s41598-019-56563-z PubMed DOI PMC

Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130‐W137. doi:10.1093/nar/gkx356 PubMed DOI PMC

Abdul‐Muneer PM, Long M, Conte AA, Santhakumar V, Pfister BJ. High Ca(2+) influx during traumatic brain injury leads to caspase‐1‐dependent neuroinflammation and cell death. Mol Neurobiol. 2017;54:3964‐3975. doi:10.1007/s12035-016-9949-4 PubMed DOI PMC

Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron. 2017;95:1246‐1265. doi:10.1016/j.neuron.2017.07.010 PubMed DOI PMC

Smith DH, Chen X, Pierce JES, et al. Progressive atrophy and neuron death for one year following brain trauma in the rat. J Neurotrauma. 1997;14:715‐727. doi:10.1089/neu.1997.14.715 PubMed DOI

Dawson G, Seabrook G, Zheng H, et al. Age‐related cognitive deficits, impaired long‐term potentiation and reduction in synaptic marker density in mice lacking the beta‐amyloid precursor protein. Neuroscience. 1999;90:1‐13. doi:10.1016/s0306-4522(98)00410-2 PubMed DOI

Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312‐325. doi:10.1038/s41593-020-00783-4 PubMed DOI PMC

Senechal Y, Kelly PH, Dev KK. Amyloid precursor protein knockout mice show age‐dependent deficits in passive avoidance learning. Behav Brain Res. 2008;186:126‐132. doi:10.1016/j.bbr.2007.08.003 PubMed DOI

Poplawski GHD, Kawaguchi R, Van Niekerk E, et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature. 2020;581:77‐82. doi:10.1038/s41586-020-2200-5 PubMed DOI

Zhang L, Yang Q, Yuan R, et al. Single‐nucleus transcriptomic mapping of blast‐induced traumatic brain injury in mice hippocampus. Sci Data. 2023;10:638. doi:10.1038/s41597-023-02552-x PubMed DOI PMC

Bjorklund GR, Wong J, Brafman D, Bowser R, Stabenfeldt SE. Traumatic brain injury induces TDP‐43 mislocalization and neurodegenerative effects in tissue distal to the primary injury site in a non‐transgenic mouse. Acta Neuropathol Commun. 2023;11:137. doi:10.1186/s40478-023-01625-7 PubMed DOI PMC

PerezGrovas‐Saltijeral A, Rajkumar AP, Knight HM. Differential expression of m(5)C RNA methyltransferase genes NSUN6 and NSUN7 in Alzheimer's disease and traumatic brain injury. Mol Neurobiol. 2023;60:2223‐2235. doi:10.1007/s12035-022-03195-6 PubMed DOI PMC

Di Pietro V, Lazzarino G, Amorini AM, et al. Fusion or fission: the destiny of mitochondria in traumatic brain injury of different severities. Sci Rep. 2017;7:9189. doi:10.1038/s41598-017-09587-2 PubMed DOI PMC

Pozo Devoto VM, Onyango IG, Stokin GB. Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci. 2022;16:959598. doi:10.3389/fncel.2022.959598 PubMed DOI PMC

van Hameren G, Muradov J, Minarik A, et al. Mitochondrial dysfunction underlies impaired neurovascular coupling following traumatic brain injury. Neurobiol Dis. 2023;186:106269. doi:10.1016/j.nbd.2023.106269 PubMed DOI

Bhowmick S, D'Mello V, Ponery N, Abdul‐Muneer P. Neurodegeneration and sensorimotor deficits in the mouse model of traumatic brain injury. Brain Sci. 2018;8:11. doi:10.3390/brainsci8010011 PubMed DOI PMC

Egawa J, Schilling JM, Cui W, et al. Neuron‐specific caveolin‐1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. FASEB J. 2017;31:3403‐3411. doi:10.1096/fj.201601288RRR PubMed DOI PMC

Bamford RA, Zuko A, Eve M, et al. CNTN4 modulates neural elongation through interplay with APP. Open Biol. 2024;14:240018. doi:10.1098/rsob.240018 PubMed DOI PMC

Lopez Sanchez MIG, Waugh HS, Tsatsanis A, et al. Amyloid precursor protein drives down‐regulation of mitochondrial oxidative phosphorylation independent of amyloid beta. Sci Rep. 2017;7:9835. doi:10.1038/s41598-017-10233-0 PubMed DOI PMC

Bretou M, Sannerud R, Escamilla‐Ayala A, et al. Accumulation of APP C‐terminal fragments causes endolysosomal dysfunction through the dysregulation of late endosome to lysosome‐ER contact sites. Dev Cell. 2024;59(12):1571‐1592. e9. doi:10.1016/j.devcel.2024.03.030 PubMed DOI

Feole M, Pozo Devoto VM, Dragišić N, et al. Swedish Alzheimer's disease variant perturbs activity of retrograde molecular motors and causes widespread derangement of axonal transport pathways. J Biol Chem. 2024;300:107137. doi:10.1016/j.jbc.2024.107137 PubMed DOI PMC

Carron SF, Yan EB, Alwis DS, Rajan R. Differential susceptibility of cortical and subcortical inhibitory neurons and astrocytes in the long term following diffuse traumatic brain injury. J Comp Neurol. 2016;524:3530‐3560. doi:10.1002/cne.24014 PubMed DOI

Opsomer R, Contino S, Perrin F, et al. Amyloid precursor protein (APP) controls the expression of the transcriptional activator neuronal PAS domain protein 4 (NPAS4) and synaptic GABA release. eNeuro. 2020;7(3):ENEURO.0322‐19.2020. doi:10.1523/ENEURO.0322-19.2020 PubMed DOI PMC

Ceglia I, Reitz C, Gresack J, et al. APP intracellular domain‐WAVE1 pathway reduces amyloid‐beta production. Nat Med. 2015;21:1054‐1059. doi:10.1038/nm.3924 PubMed DOI PMC

Grimm MOW, Zinser EG, Grösgen S, et al. Amyloid precursor protein (APP) mediated regulation of ganglioside homeostasis linking Alzheimer's disease pathology with ganglioside metabolism. PLoS One. 2012;7:e34095. doi:10.1371/journal.pone.0034095 PubMed DOI PMC

Huysseune S, Kienlen‐Campard P, Hébert S, et al. Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. FASEB J. 2009;23:4158‐4167. doi:10.1096/fj.09-140012 PubMed DOI

Shu R, Wong W, Ma QH, et al. APP intracellular domain acts as a transcriptional regulator of miR‐663 suppressing neuronal differentiation. Cell Death Dis. 2015;6:e1651. doi:10.1038/cddis.2015.10 PubMed DOI PMC

Cao X, Südhof TC. Dissection of amyloid‐beta precursor protein‐dependent transcriptional transactivation. J Biol Chem. 2004;279:24601‐24611. doi:10.1074/jbc.M402248200 PubMed DOI

Probst S, Riese F, Kägi L, et al. Lysine acetyltransferase Tip60 acetylates the APP adaptor Fe65 to increase its transcriptional activity. Biol Chem. 2021;402:481‐499. doi:10.1515/hsz-2020-0279 PubMed DOI

Biederer T, Cao X, Südhof TC, Liu X. Regulation of APP‐dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. J Neurosci. 2002;22:7340‐7351. doi:10.1523/JNEUROSCI.22-17-07340.2002 PubMed DOI PMC

Araki Y, Miyagi N, Kato N, et al. Coordinated metabolism of Alcadein and amyloid beta‐protein precursor regulates FE65‐dependent gene transactivation. J Biol Chem. 2004;279:24343‐24354. doi:10.1074/jbc.M401925200 PubMed DOI

Capone R, Tiwari A, Hadziselimovic A, et al. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. J Biol Chem. 2021;296:100652. doi:10.1016/j.jbc.2021.100652 PubMed DOI PMC

Agrawal RR, Larrea D, Xu Y, et al. Alzheimer's‐associated upregulation of mitochondria‐associated ER membranes after traumatic brain injury. Cell Mol Neurobiol. 2023;43:2219‐2241. doi:10.1007/s10571-022-01299-0 PubMed DOI PMC

Van den Heuvel C, Blumbergs PC, Finnie JW, et al. Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: an ovine head impact model. Exp Neurol. 1999;159:441‐450. doi:10.1006/exnr.1999.7150 PubMed DOI

Hefter D, Draguhn A. APP as a protective factor in acute neuronal insults. Front Mol Neurosci. 2017;10:22. doi:10.3389/fnmol.2017.00022 PubMed DOI PMC

Dash PK, Hylin MJ, Hood KN, et al. Inhibition of eukaryotic initiation factor 2 alpha phosphatase reduces tissue damage and improves learning and memory after experimental traumatic brain injury. J Neurotrauma. 2015;32:1608‐1620. doi:10.1089/neu.2014.3772 PubMed DOI PMC

Chou A, Krukowski K, Jopson T, et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc Natl Acad Sci U S A. 2017;114:E6420‐E6426. doi:10.1073/pnas.1707661114 PubMed DOI PMC

Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: an ordered anarchy. Wiley Interdiscip Rev RNA. 2021;12:e1632. doi:10.1002/wrna.1632 PubMed DOI PMC

Sabi R, Tuller T. Modelling and measuring intracellular competition for finite resources during gene expression. J R Soc Interface. 2019;16:20180887. doi:10.1098/rsif.2018.0887 PubMed DOI PMC

Metzl‐Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N. Principles of cellular resource allocation revealed by condition‐dependent proteome profiling. Elife. 2017;6:e28034. doi:10.7554/eLife.28034 PubMed DOI PMC

Li M, Pehar M, Liu Y, et al. The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES‐dependent mechanism. Neurobiol Aging. 2015;36:2725‐2736. doi:10.1016/j.neurobiolaging.2015.06.021 PubMed DOI PMC

Rimal S, Li Y, Vartak R, et al. Inefficient quality control of ribosome stalling during APP synthesis generates CAT‐tailed species that precipitate hallmarks of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:169. doi:10.1186/s40478-021-01268-6 PubMed DOI PMC

Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci. 2004;5:931‐942. doi:10.1038/nrn1557 PubMed DOI

Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18:281‐298. doi:10.1038/nrn.2017.29 PubMed DOI

Saitoh T, Sundsmo M, Roch J, et al. Secreted form of amyloid beta protein precursor is involved in the growth regulation of fibroblasts. Cell. 1989;58:615‐622. doi:10.1016/0092-8674(89)90096-2 PubMed DOI

Kessissoglou IA, Langui D, Hasan A, et al. The Drosophila amyloid precursor protein homologue mediates neuronal survival and neuroglial interactions. PLoS Biol. 2020;18:e3000703. doi:10.1371/journal.pbio.3000703 PubMed DOI PMC

Meziane H, Dodart J, Mathis C, et al. Memory‐enhancing effects of secreted forms of the beta‐amyloid precursor protein in normal and amnestic mice. Proc Natl Acad Sci U S A. 1998;95:12683‐12688. doi:10.1073/pnas.95.21.12683 PubMed DOI PMC

Araki W, Kitaguchi N, Tokushima Y, et al. Trophic effect of beta‐amyloid precursor protein on cerebral cortical neurons in culture. Biochem Biophys Res Commun. 1991;181:265‐271. doi:10.1016/s0006-291x(05)81412-3 PubMed DOI

Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M, Jolkkonen J. Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci. 2007;26:1845‐1852. doi:10.1111/j.1460-9568.2007.05807.x PubMed DOI

Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C. sAPPalpha rescues deficits in amyloid precursor protein knockout mice following focal traumatic brain injury. J Neurochem. 2012;122:208‐220. doi:10.1111/j.1471-4159.2012.07761.x PubMed DOI

Ayton S, Zhang M, Roberts BR, et al. Ceruloplasmin and beta‐amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radic Biol Med. 2014;69:331‐337. doi:10.1016/j.freeradbiomed.2014.01.041 PubMed DOI

Sennvik K, Fastbom J, Blomberg M, Wahlund L, Winblad B, Benedikz E. Levels of alpha‐ and beta‐secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci Lett. 2000;278:169‐172. doi:10.1016/s0304-3940(99)00929-5 PubMed DOI

Wu G, Sankaranarayanan S, Hsieh SH, Simon AJ, Savage MJ. Decrease in brain soluble amyloid precursor protein beta (sAPPbeta) in Alzheimer's disease cortex. J Neurosci Res. 2011;89:822‐832. doi:10.1002/jnr.22618 PubMed DOI

Shinkai Y, Yoshimura M, Ito Y, et al. Amyloid beta‐proteins 1‐40 and 1‐42(43) in the soluble fraction of extra‐ and intracranial blood vessels. Ann Neurol. 1995;38:421‐428. doi:10.1002/ana.410380312 PubMed DOI

Van Broeckhoven C, Haan J, Bakker E, et al. Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science. 1990;248:1120‐1122. doi:10.1126/science.1971458 PubMed DOI

Oyama F, Cairns NJ, Shimada H, Oyama R, Titani K, Ihara Y. Down's syndrome: up‐regulation of beta‐amyloid protein precursor and tau mRNAs and their defective coordination. J Neurochem. 1994;62:1062‐1066. doi:10.1046/j.1471-4159.1994.62031062.x PubMed DOI

Jiang Y, Sato Y, Im E, et al. Lysosomal dysfunction in Down syndrome is APP‐Dependent and mediated by APP‐betaCTF (C99). J Neurosci. 2019;39:5255‐5268. doi:10.1523/JNEUROSCI.0578-19.2019 PubMed DOI PMC

Song C, Broadie K. Fragile X mental retardation protein coordinates neuron‐to‐glia communication for clearance of developmentally transient brain neurons. Proc Natl Acad Sci U S A. 2023;120:e2216887120. doi:10.1073/pnas.2216887120 PubMed DOI PMC

Hernández‐Ortega K, Garcia‐Esparcia P, Gil L, Lucas JJ, Ferrer I. Altered machinery of protein synthesis in Alzheimer's: from the nucleolus to the ribosome. Brain Pathol. 2016;26:593‐605. doi:10.1111/bpa.12335 PubMed DOI PMC

Ding Q, Markesbery WR, Chen Q, Li F, Keller JN. Ribosome dysfunction is an early event in Alzheimer's disease. J Neurosci. 2005;25:9171‐9175. doi:10.1523/JNEUROSCI.3040-05.2005 PubMed DOI PMC

Sajdel‐Sulkowska EM, Marotta CA. Alzheimer's disease brain: alterations in RNA levels and in a ribonuclease‐inhibitor complex. Science. 1984;225:947‐949. doi:10.1126/science.6206567 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...