Mitochondrial behavior when things go wrong in the axon

. 2022 ; 16 () : 959598. [epub] 20220805

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35990893

Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.

Zobrazit více v PubMed

Adalbert R., Nogradi A., Babetto E., Janeckova L., Walker S. A., Kerschensteiner M., et al. . (2009). Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain 132, 402–416. 10.1093/brain/awn312 PubMed DOI

Alexander C., Votruba M., Pesch U. E., Thiselton D. L., Mayer S., Moore A., et al. . (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211–215. 10.1038/79944 PubMed DOI

Amiri M., Hollenbeck P. J. (2008). Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev. Neurobiol. 68, 1348–1361. 10.1002/dneu.20668 PubMed DOI PMC

Angeletti C., Amici A., Gilley J., Loreto A., Trapanotto A. G., Antoniou C., et al. . (2022). SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. iScience 25, 103812. 10.1016/j.isci.2022.103812 PubMed DOI PMC

Arrázola M. S., Saquel C., Catalán R. J., Barrientos S. A., Hernandez D. E., Martínez N. W., et al. . (2019). Axonal degeneration is mediated by necroptosis activation. J. Neurosci. 39, 3832–3844. 10.1523/JNEUROSCI.0881-18.2019 PubMed DOI PMC

Arrázola M. S., Silva-Alvarez C., Inestrosa N. C. (2015). How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front. Cell. Neurosci. 9, 166–166. 10.3389/fncel.2015.00166 PubMed DOI PMC

Babij R., Lee M., Cortés E., Vonsattel J.-P. G., Faust P. L., Louis E. D. (2013). Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain 136, 3051–3061. 10.1093/brain/awt238 PubMed DOI PMC

Bao F., Shi H., Gao M., Yang L., Zhou L., Zhao Q., et al. . (2018). Polybrene induces neural degeneration by bidirectional Ca2+ influx-dependent mitochondrial and ER-mitochondrial dynamics. Cell Death Dis. 9, 966. 10.1038/s41419-018-1009-8 PubMed DOI PMC

Barrientos S. A., Martinez N. W., Yoo S., Jara J. S., Zamorano S., Hetz C., et al. . (2011). Axonal degeneration is mediated by the mitochondrial permeability transition pore. J. Neurosci. 31, 966–978. 10.1523/JNEUROSCI.4065-10.2011 PubMed DOI PMC

Bayir H., Tyurin V. A., Tyurina Y. Y., Viner R., Ritov V., Amoscato A. A., et al. . (2007). Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann. Neurol. 62, 154–169. 10.1002/ana.21168 PubMed DOI

Bernardi P., Krauskopf A., Basso E., Petronilli V., Blachly-Dyson E., Blalchy-Dyson E., et al. . (2006). The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077–2099. 10.1111/j.1742-4658.2006.05213.x PubMed DOI

Berthet A., Margolis E. B., Zhang J., Hsieh I., Zhang J., Hnasko T. S., et al. . (2014). Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J. Neurosci. 34, 14304–14317. 10.1523/JNEUROSCI.0930-14.2014 PubMed DOI PMC

Blennow K., Brody D. L., Kochanek P. M., Levin H., McKee A., Ribbers G. M., et al. . (2016). Traumatic brain injuries. Nat. Rev. Dis. Primers 2, 16084. 10.1038/nrdp.2016.84 PubMed DOI

Breckwoldt M. O., Pfister F. M., Bradley P. M., Marinković P., Williams P. R., Brill M. S., et al. . (2014). Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 20, 555–560. 10.1038/nm.3520 PubMed DOI

Bruggeman G. F., Haitsma I. K., Dirven C. M. F., Volovici V. (2021). Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir. 163, 31–44. 10.1007/s00701-020-04594-1 PubMed DOI PMC

Büki A., Okonkwo D. O., Povlishock J. T. (1999). Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J. Neurotrauma 16, 511–521. 10.1089/neu.1999.16.511 PubMed DOI

Büki A., Okonkwo D. O., Wang K. K., Povlishock J. T. (2000). Cytochrome c release and caspase activation in traumatic axonal injury. J. Neurosci. 20, 2825–2834. 10.1523/JNEUROSCI.20-08-02825.2000 PubMed DOI PMC

Burté F., Carelli V., Chinnery P. F., Yu-Wai-Man P. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24. 10.1038/nrneurol.2014.228 PubMed DOI

Burton P. R., Paige J. L. (1981). Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc. Natl. Acad. Sci. U.S.A. 78, 3269–3273. 10.1073/pnas.78.5.3269 PubMed DOI PMC

Byrne J. J., Soh M. S., Chandhok G., Vijayaraghavan T., Teoh J. S., Crawford S., et al. . (2019). Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell. Mol. Life Sci. 76, 1967–1985. 10.1007/s00018-019-03024-5 PubMed DOI PMC

Cagalinec M., Safiulina D., Liiv M., Liiv J., Choubey V., Wareski P., et al. . (2013). Principles of the mitochondrial fusion and fission cycle in neurons. J. Cell Sci. 126, 2187–2197. 10.1242/jcs.118844 PubMed DOI

Cai Q., Gerwin C., Sheng Z. H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J. Cell Biol. 170, 959–969. 10.1083/jcb.200506042 PubMed DOI PMC

Cali T., Ottolini D., Brini M. (2012). Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium 52, 73–85. 10.1016/j.ceca.2012.04.015 PubMed DOI PMC

Calkins M. J., Reddy P. H. (2011). Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochim. Biophys. Acta 1812, 507–513. 10.1016/j.bbadis.2011.01.007 PubMed DOI PMC

Cartoni R., Arnaud E., Médard J. J., Poirot O., Courvoisier D. S., Chrast R., et al. . (2010). Expression of mitofusin 2(R94Q) in a transgenic mouse leads to charcot-marie-tooth neuropathy type 2A. Brain 133, 1460–1469. 10.1093/brain/awq082 PubMed DOI

Cartoni R., Norsworthy M. W., Bei F., Wang C., Li S., Zhang Y., et al. . (2016). The mammalian-specific protein armcx1 regulates mitochondrial transport during axon regeneration. Neuron 92, 1294–1307. 10.1016/j.neuron.2016.10.060 PubMed DOI PMC

Chan D. C. (2020). Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235–259. 10.1146/annurev-pathmechdis-012419-032711 PubMed DOI

Chang D. T., Honick A. S., Reynolds I. J. (2006). Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci. 26, 7035–7045. 10.1523/JNEUROSCI.1012-06.2006 PubMed DOI PMC

Chang D. T., Reynolds I. J. (2006a). Mitochondrial trafficking and morphology in healthy and injured neurons. Prog. Neurobiol. 80, 241–268. 10.1016/j.pneurobio.2006.09.003 PubMed DOI

Chang D. T. W., Reynolds I. J. (2006b). Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture. Neuroscience 141, 727–736. 10.1016/j.neuroscience.2006.01.034 PubMed DOI

Chavan V., Willis J., Walker S. K., Clark H. R., Liu X., Fox M. A., et al. . (2015). Central presynaptic terminals are enriched in ATP but the majority lack mitochondria. PLoS ONE 10, e0125185. 10.1371/journal.pone.0125185 PubMed DOI PMC

Chen M., Li Y., Yang M., Chen X., Chen Y., Yang F., et al. . (2016). A new method for quantifying mitochondrial axonal transport. Protein Cell 7, 804–819. 10.1007/s13238-016-0268-3 PubMed DOI PMC

Chen X. H., Meaney D. F., Xu B. N., Nonaka M., McIntosh T. K., Wolf J. A., et al. . (1999). Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58, 588–596. 10.1097/00005072-199906000-00003 PubMed DOI

Chen Y., Sheng Z. H. (2013). Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202, 351–364. 10.1083/jcb.201302040 PubMed DOI PMC

Cheng H. C., Ulane C. M., Burke R. E. (2010). Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67, 715–725. 10.1002/ana.21995 PubMed DOI PMC

Cheng X. T., Sheng Z. H. (2021). Developmental regulation of microtubule-based trafficking and anchoring of axonal mitochondria in health and diseases. Dev. Neurobiol. 81, 284–299. 10.1002/dneu.22748 PubMed DOI PMC

Cheung K.-H., Shineman D., Müller M., Cárdenas C., Mei L., Yang J., et al. . (2008). Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58, 871–883. 10.1016/j.neuron.2008.04.015 PubMed DOI PMC

Cho D. H., Nakamura T., Fang J., Cieplak P., Godzik A., Gu Z., et al. . (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102–105. 10.1126/science.1171091 PubMed DOI PMC

Cho K. I., Cai Y., Yi H., Yeh A., Aslanukov A., Ferreira P. A. (2007). Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8, 1722–1735. 10.1111/j.1600-0854.2007.00647.x PubMed DOI

Coleman M. P., Höke A. (2020). Programmed axon degeneration: from mouse to mechanism to medicine. Nat. Rev. Neurosci. 21, 183–196. 10.1038/s41583-020-0269-3 PubMed DOI PMC

Cotteret S., Jaffer Z. M., Beeser A., Chernoff J. (2003). p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol. Cell. Biol. 23, 5526–5539. 10.1128/MCB.23.16.5526-5539.2003 PubMed DOI PMC

Cross D. J., Meabon J. S., Cline M. M., Richards T. L., Stump A. J., Cross C. G., et al. . (2019). Paclitaxel reduces brain injury from repeated head trauma in mice. J. Alzheimers Dis. 67, 859–874. 10.3233/JAD-180871 PubMed DOI PMC

Datar A., Ameeramja J., Bhat A., Srivastava R., Mishra A., Bernal R., et al. . (2019). The roles of microtubules and membrane tension in axonal beading, retraction, and atrophy. Biophys. J. 117, 880–891. 10.1016/j.bpj.2019.07.046 PubMed DOI PMC

De Vos K. J., Chapman A. L., Tennant M. E., Manser C., Tudor E. L., Lau K. F., et al. . (2007). Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum. Mol. Genet. 16, 2720–2728. 10.1093/hmg/ddm226 PubMed DOI PMC

Detmer S. A., Vande Velde C., Cleveland D. W., Chan D. C. (2008). Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of charcot-marie-tooth type 2A. Hum. Mol. Genet. 17, 367–375. 10.1093/hmg/ddm314 PubMed DOI

Devine M. J., Kittler J. T. (2018). Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 19, 63–80. 10.1038/nrn.2017.170 PubMed DOI

Di Meo D., Ravindran P., Sadhanasatish T., Dhumale P., Püschel A. W. (2021). The balance of mitochondrial fission and fusion in cortical axons depends on the kinases SadA and SadB. Cell Rep. 37, 110141. 10.1016/j.celrep.2021.110141 PubMed DOI

Di Pietro V., Lazzarino G., Amorini A. M., Signoretti S., Hill L. J., Porto E., et al. . (2017). Fusion or fission: the destiny of mitochondria in traumatic brain injury of different severities. Sci. Rep. 7, 9189. 10.1038/s41598-017-09587-2 PubMed DOI PMC

Dollé J. P., Morrison B., Schloss R. S., Yarmush M. L. (2014). Brain-on-a-chip microsystem for investigating traumatic brain injury: axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries. Technology 2, 106. 10.1142/S2339547814500095 PubMed DOI PMC

Dorn G. W. (2020). Mitofusin 2 dysfunction and disease in mice and men. Front. Physiol. 11, 782. 10.3389/fphys.2020.00782 PubMed DOI PMC

Drerup C. M., Herbert A. L., Monk K. R., Nechiporuk A. V. (2017). Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons. Elife 6, e22234. 10.7554/eLife.22234.021 PubMed DOI PMC

Du H., Guo L., Yan S., Sosunov A. A., McKhann G. M., Yan S. S. (2010). Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc. Natl. Acad. Sci. U.S.A. 107, 18670–18675. 10.1073/pnas.1006586107 PubMed DOI PMC

El Fissi N., Rojo M., Aouane A., Karatas E., Poliacikova G., David C., et al. . (2018). Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy. EMBO Rep. 19, e45241. 10.15252/embr.201745241 PubMed DOI PMC

Farkas O., Lifshitz J., Povlishock J. T. (2006). Mechanoporation induced by diffuse traumatic brain injury: an irreversible or reversible response to injury. J. Neurosci. 26, 3130–3140. 10.1523/JNEUROSCI.5119-05.2006 PubMed DOI PMC

Feng Y., Yan T., Zheng J., Ge X., Mu Y., Zhang Y., et al. . (2010). Overexpression of Wld(S) or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live zebrafish. J. Neurosci. Res. 88, 3319–3327. 10.1002/jnr.22498 PubMed DOI

Ferguson B., Matyszak M. K., Esiri M. M., Perry V. H. (1997). Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399. 10.1093/brain/120.3.393 PubMed DOI

Ferreiro E., Oliveira C. R., Pereira C. M. F. (2008). The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol. Dis. 30, 331–342. 10.1016/j.nbd.2008.02.003 PubMed DOI

Ferri A., Fiorenzo P., Nencini M., Cozzolino M., Pesaresi M. G., Valle C., et al. . (2010). Glutaredoxin 2 prevents aggregation of mutant SOD1 in mitochondria and abolishes its toxicity. Hum. Mol. Genet. 19, 4529–4542. 10.1093/hmg/ddq383 PubMed DOI PMC

Fischer T. D., Hylin M. J., Zhao J., Moore A. N., Waxham M. N., Dash P. K. (2016). Altered mitochondrial dynamics and TBI pathophysiology. Front. Syst. Neurosci. 10, 29. 10.3389/fnsys.2016.00029 PubMed DOI PMC

Gandhi S., Wood-Kaczmar A., Yao Z., Plun-Favreau H., Deas E., Klupsch K., et al. . (2009). PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33, 627–638. 10.1016/j.molcel.2009.02.013 PubMed DOI PMC

Gerdts J., Brace E. J., Sasaki Y., DiAntonio A., Milbrandt J. (2015). Neurobiology. SARM1 activation triggers axon degeneration locally via NAD? destruction. Science 348, 453–457. 10.1126/science.1258366 PubMed DOI PMC

Giacomello M., Pyakurel A., Glytsou C., Scorrano L. (2020). The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224. 10.1038/s41580-020-0210-7 PubMed DOI

Gilley J., Coleman M. P. (2010). Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 8, e1000300-. 10.1371/journal.pbio.1000300 PubMed DOI PMC

Gilmer L. K., Roberts K. N., Joy K., Sullivan P. G., Scheff S. W. (2009). Early mitochondrial dysfunction after cortical contusion injury. J. Neurotrauma 26, 1271–1280. 10.1089/neu.2008.0857 PubMed DOI PMC

Gitler D., Spira M. E. (1998). Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20, 1123–1135. 10.1016/S0896-6273(00)80494-8 PubMed DOI

Glauser L., Sonnay S., Stafa K., Moore D. J. (2011). Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J. Neurochem. 118, 636–645. 10.1111/j.1471-4159.2011.07318.x PubMed DOI

Godoy J. A., Arrázola M. S., Ordenes D., Silva-Alvarez C., Braidy N., Inestrosa N. C. (2014). Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons. J. Biol. Chem. 289, 36179–36193. 10.1074/jbc.M114.557009 PubMed DOI PMC

Graham J. M., Papadakis N., Evans J., Widjaja E., Romanowski C. A., Paley M. N., et al. . (2004). Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology 63, 2111–2119. 10.1212/01.WNL.0000145766.03057.E7 PubMed DOI

Gu Y., Jukkola P., Wang Q., Esparza T., Zhao Y., Brody D., et al. . (2017). Polarity of varicosity initiation in central neuron mechanosensation. J. Cell Biol. 216, 2179–2199. 10.1083/jcb.201606065 PubMed DOI PMC

Guo L., Du H., Yan S., Wu X., McKhann G. M., Chen J. X., et al. . (2013). Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer's neurons. PLoS ONE 8, e54914. 10.1371/journal.pone.0054914 PubMed DOI PMC

Guo X., Macleod G. T., Wellington A., Hu F., Panchumarthi S., Schoenfield M., et al. . (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47, 379–393. 10.1016/j.neuron.2005.06.027 PubMed DOI

Hånell A., Greer J. E., McGinn M. J., Povlishock J. T. (2015). Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathol. 129, 317–332. 10.1007/s00401-014-1376-x PubMed DOI

Han Q., Xie Y., Ordaz J. D., Huh A. J., Huang N., Wu W., et al. . (2020). Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab. 31, 623–641.e8. 10.1016/j.cmet.2020.02.002 PubMed DOI PMC

Han S. M., Baig H. S., Hammarlund M. (2016). Mitochondria localize to injured axons to support regeneration. Neuron 92, 1308–1323. 10.1016/j.neuron.2016.11.025 PubMed DOI PMC

Hansson Petersen C. A., Alikhani N., Behbahani H., Wiehager B., Pavlov P. F., Alafuzoff I., et al. . (2008). The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl. Acad. Sci. U.S.A. 105, 13145–13150. 10.1073/pnas.0806192105 PubMed DOI PMC

Henley J., Poo M. M. (2004). Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol. 14, 320–330. 10.1016/j.tcb.2004.04.006 PubMed DOI PMC

Hirokawa N., Niwa S., Tanaka Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638. 10.1016/j.neuron.2010.09.039 PubMed DOI

Howarth C., Gleeson P., Attwell D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 32, 1222–1232. 10.1038/jcbfm.2012.35 PubMed DOI PMC

Huang J., Friedland R. P., Auchus A. P. (2007). Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: preliminary evidence of axonal degeneration in the temporal lobe. Am. J. Neuroradiol. 28, 1943–1948. 10.3174/ajnr.A0700 PubMed DOI PMC

Huang N., Li S., Xie Y., Han Q., Xu X. M., Sheng Z. H. (2021). Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr. Biol. 31, 3098–3114.e7. 10.1016/j.cub.2021.04.079 PubMed DOI PMC

Ikuta J., Maturana A., Fujita T., Okajima T., Tatematsu K., Tanizawa K., et al. . (2007). Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem. Biophys. Res. Commun. 353, 127–132. 10.1016/j.bbrc.2006.11.142 PubMed DOI

Ineichen B. V., Zhu K., Carlström K. E. (2021). Axonal mitochondria adjust in size depending on g-ratio of surrounding myelin during homeostasis and advanced remyelination. J. Neurosci. Res. 99, 793–805. 10.1002/jnr.24767 PubMed DOI PMC

Ishihara N., Nomura M., Jofuku A., Kato H., Suzuki S. O., Masuda K., et al. . (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966. 10.1038/ncb1907 PubMed DOI

Itoh K., Nakamura K., Iijima M., Sesaki H. (2013). Mitochondrial dynamics in neurodegeneration. Trends Cell Biol. 23, 64–71. 10.1016/j.tcb.2012.10.006 PubMed DOI PMC

Jadiya P., Garbincius J. F., Elrod J. W. (2021). Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol. Commun. 9, 124. 10.1186/s40478-021-01224-4 PubMed DOI PMC

Johnson V. E., Stewart W., Weber M. T., Cullen D. K., Siman R., Smith D. H. (2016). SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 131, 115–135. 10.1007/s00401-015-1506-0 PubMed DOI PMC

Kang J. S., Tian J. H., Pan P. Y., Zald P., Li C., Deng C., et al. . (2008). Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137–148. 10.1016/j.cell.2007.11.024 PubMed DOI PMC

Kedra J., Lin S., Pacheco A., Gallo G., Smith G. M. (2021). Axotomy induces Drp1-dependent fragmentation of axonal mitochondria. Front. Mol. Neurosci. 14, 668670. 10.3389/fnmol.2021.668670 PubMed DOI PMC

Kilinc D., Gallo G., Barbee K. A. (2008). Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp. Neurol. 212, 422–430. 10.1016/j.expneurol.2008.04.025 PubMed DOI

Kiryu-Seo S., Tamada H., Kato Y., Yasuda K., Ishihara N., Nomura M., et al. . (2016). Mitochondrial fission is an acute and adaptive response in injured motor neurons. Sci. Rep. 6, 28331. 10.1038/srep28331 PubMed DOI PMC

Kitay B. M., McCormack R., Wang Y., Tsoulfas P., Zhai R. G. (2013). Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLD(S)-mediated axon protection independent of axonal mitochondria. Hum. Mol. Genet. 22, 1601–1614. 10.1093/hmg/ddt009 PubMed DOI PMC

Knowlton W. M., Hubert T., Wu Z., Chisholm A. D., Jin Y. (2017). A select subset of electron transport chain genes associated with optic atrophy link mitochondria to axon regeneration in Caenorhabditis elegans. Front. Neurosci. 11, 263. 10.3389/fnins.2017.00263 PubMed DOI PMC

Kruppa A. J., Buss F. (2021). Motor proteins at the mitochondria-cytoskeleton interface. J. Cell Sci. 134, jcs226084. 10.1242/jcs.226084 PubMed DOI PMC

Lee S., Sterky F. H., Mourier A., Terzioglu M., Cullheim S., Olson L., et al. . (2012). Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum. Mol. Genet. 21, 4827–4835. 10.1093/hmg/dds352 PubMed DOI

Lewis T. L., Kwon S. K., Lee A., Shaw R., Polleux F. (2018). MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat. Commun. 9, 5008. 10.1038/s41467-018-07416-2 PubMed DOI PMC

Lewis T. L., Turi G. F., Kwon S. K., Losonczy A., Polleux F. (2016). Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr. Biol. 26, 2602–2608. 10.1016/j.cub.2016.07.064 PubMed DOI PMC

Li S., Xiong G. J., Huang N., Sheng Z. H. (2020). The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat. Metab. 2, 1077–1095. 10.1038/s42255-020-00289-0 PubMed DOI PMC

Licht-Mayer S., Campbell G. R., Canizares M., Mehta A. R., Gane A. B., McGill K., et al. . (2020). Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol. 140, 143–167. 10.1007/s00401-020-02179-x PubMed DOI PMC

Lin M. Y., Cheng X. T., Tammineni P., Xie Y., Zhou B., Cai Q., et al. . (2017). Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94, 595–610.e6. 10.1016/j.neuron.2017.04.004 PubMed DOI PMC

Lingor P., Koch J. C., Tönges L., Bähr M. (2012). Axonal degeneration as a therapeutic target in the CNS. Cell Tissue Res. 349, 289–311. 10.1007/s00441-012-1362-3 PubMed DOI PMC

Liu P., Huang H., Fang F., Liu L., Li L., Feng X., et al. . (2021). Neuronal NMNAT2 overexpression does not achieve significant neuroprotection in experimental autoimmune encephalomyelitis/optic neuritis. Front. Cell. Neurosci. 15, 754651. 10.3389/fncel.2021.754651 PubMed DOI PMC

López-Doménech G., Serrat R., Mirra S., D'Aniello S., Somorjai I., Abad A., et al. . (2012). The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat. Commun. 3, 814–814. 10.1038/ncomms1829 PubMed DOI

Lunn E. R., Perry V. H., Brown M. C., Rosen H., Gordon S. (1989). Absence of wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33. 10.1111/j.1460-9568.1989.tb00771.x PubMed DOI

Macaskill A. F., Rinholm J. E., Twelvetrees A. E., Arancibia-Carcamo I. L., Muir J., Fransson A., et al. . (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541–555. 10.1016/j.neuron.2009.01.030 PubMed DOI PMC

Maday S., Twelvetrees A. E., Moughamian A. J., Holzbaur E. L. (2014). Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309. 10.1016/j.neuron.2014.10.019 PubMed DOI PMC

Mar F. M., Simões A. R., Leite S., Morgado M. M., Santos T. E., Rodrigo I. S., et al. . (2014). CNS axons globally increase axonal transport after peripheral conditioning. J. Neurosci. 34, 5965–5970. 10.1523/JNEUROSCI.4680-13.2014 PubMed DOI PMC

Maxwell W. L. (1996). Histopathological changes at central nodes of Ranvier after stretch-injury. Microsc. Res. Tech. 34, 522–535. 10.1002/(SICI)1097-0029(19960815)34:6<522::AID-JEMT4>3.0.CO;2-L PubMed DOI

Mbye L. H., Singh I. N., Carrico K. M., Saatman K. E., Hall E. D. (2009). Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J. Cereb. Blood Flow Metab. 29, 87–97. 10.1038/jcbfm.2008.93 PubMed DOI PMC

McDonald J. W., Sadowsky C. (2002). Spinal-cord injury. Lancet 359, 417–425. 10.1016/S0140-6736(02)07603-1 PubMed DOI

Meeusen S., McCaffery J. M., Nunnari J. (2004). Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752. 10.1126/science.1100612 PubMed DOI

Merlini E., Coleman M. P., Loreto A. (2022). Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci. 45, 53–63. 10.1016/j.tins.2021.10.014 PubMed DOI

Mironov S. L. (2007). ADP regulates movements of mitochondria in neurons. Biophys. J. 92, 2944–2952. 10.1529/biophysj.106.092981 PubMed DOI PMC

Misgeld T., Kerschensteiner M., Bareyre F. M., Burgess R. W., Lichtman J. W. (2007). Imaging axonal transport of mitochondria in vivo. Nat. Methods 4, 559–561. 10.1038/nmeth1055 PubMed DOI

Misgeld T., Schwarz T. L. (2017). Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96, 651–666. 10.1016/j.neuron.2017.09.055 PubMed DOI PMC

Mishra P., Chan D. C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646. 10.1038/nrm3877 PubMed DOI PMC

Mishra P., Chan D. C. (2016). Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387. 10.1083/jcb.201511036 PubMed DOI PMC

Misko A. L., Sasaki Y., Tuck E., Milbrandt J., Baloh R. H. (2012). Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J. Neurosci. 32, 4145–4155. 10.1523/JNEUROSCI.6338-11.2012 PubMed DOI PMC

Morsci N. S., Hall D. H., Driscoll M., Sheng Z.-H. (2016). Age-Related phasic patterns of mitochondrial maintenance in adult caenorhabditis elegans neurons. J. Neurosci. 36, 1373–1385. 10.1523/JNEUROSCI.2799-15.2016 PubMed DOI PMC

Mou Y., Dein J., Chen Z., Jagdale M., Li X. J. (2021). MFN2 deficiency impairs mitochondrial transport and downregulates motor protein expression in human spinal motor neurons. Front. Mol. Neurosci. 14, 727552. 10.3389/fnmol.2021.727552 PubMed DOI PMC

Niescier R. F., Hong K., Park D., Min K. T. (2018). MCU interacts with miro1 to modulate mitochondrial functions in neurons. J. Neurosci. 38, 4666–4677. 10.1523/JNEUROSCI.0504-18.2018 PubMed DOI PMC

Nikić I., Merkler D., Sorbara C., Brinkoetter M., Kreutzfeldt M., Bareyre F. M., et al. . (2011). A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499. 10.1038/nm.2324 PubMed DOI

Obashi K., Okabe S. (2013). Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur. J. Neurosci. 38, 2350–2363. 10.1111/ejn.12263 PubMed DOI

Oettinghaus B., Schulz J. M., Restelli L. M., Licci M., Savoia C., Schmidt A., et al. . (2016). Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons. Cell Death Differ. 23, 18–28. 10.1038/cdd.2015.39 PubMed DOI PMC

Ohno N., Chiang H., Mahad D. J., Kidd G. J., Liu L., Ransohoff R. M., et al. . (2014). Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc. Natl. Acad. Sci. U.S.A. 111, 9953–9958. 10.1073/pnas.1401155111 PubMed DOI PMC

Ohno N., Kidd G. J., Mahad D., Kiryu-Seo S., Avishai A., Komuro H., et al. . (2011). Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J. Neurosci. 31, 7249–7258. 10.1523/JNEUROSCI.0095-11.2011 PubMed DOI PMC

Osellame L. D., Singh A. P., Stroud D. A., Palmer C. S., Stojanovski D., Ramachandran R., et al. . (2016). Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181. 10.1242/jcs.185165 PubMed DOI PMC

Osterloh J. M., Yang J., Rooney T. M., Fox A. N., Adalbert R., Powell E. H., et al. . (2012). dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481–484. 10.1126/science.1223899 PubMed DOI PMC

Overly C. C., Rieff H. I., Hollenbeck P. J. (1996). Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J. Cell Sci. 109, 971–980. 10.1242/jcs.109.5.971 PubMed DOI

Palay S. L. (1956). Synapses in the central nervous system. J. Biophys. Biochem. Cytol. 2, 193–202. 10.1083/jcb.2.4.193 PubMed DOI PMC

Paß T., Wiesner R. J., Pla-Martín D. (2021). Selective neuron vulnerability in common and rare diseases-mitochondria in the focus. Front. Mol. Biosci. 8, 676187. 10.3389/fmolb.2021.676187 PubMed DOI PMC

Pathak D., Sepp K. J., Hollenbeck P. J. (2010). Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J. Neurosci. 30, 8984–8992. 10.1523/JNEUROSCI.1621-10.2010 PubMed DOI PMC

Pitts K. R., Yoon Y., Krueger E. W., McNiven M. A. (1999). The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell 10, 4403–4417. 10.1091/mbc.10.12.4403 PubMed DOI PMC

Plucińska G., Paquet D., Hruscha A., Godinho L., Haass C., Schmid B., et al. . (2012). In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J. Neurosci. 32, 16203–16212. 10.1523/JNEUROSCI.1327-12.2012 PubMed DOI PMC

Pozo Devoto V. M., Dimopoulos N., Alloatti M., Pardi M. B., Saez T. M., Otero M. G., et al. . (2017). αSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson's disease. Sci. Rep. 7, 5042. 10.1038/s41598-017-05334-9 PubMed DOI PMC

Pozo Devoto V. M., Lacovich V., Feole M., Bhat P., Chovan J., Carna M., et al. . (2022). Unraveling axonal mechanisms of traumatic brain injury cold spring harbor laboratory. bioRxiv. 10.1101/2022.03.30.486433 PubMed DOI PMC

Prots I., Veber V., Brey S., Campioni S., Buder K., Riek R., et al. . (2013). α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J. Biol. Chem. 288, 21742–21754. 10.1074/jbc.M113.451815 PubMed DOI PMC

Quintero O. A., DiVito M. M., Adikes R. C., Kortan M. B., Case L. B., Lier A. J., et al. . (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr. Biol. 19, 2008–2013. 10.1016/j.cub.2009.10.026 PubMed DOI PMC

Ramsden M., Henderson Z., Pearson H. A. (2002). Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1-40) is dependent on solubility status. Brain Res. 956, 254–261. 10.1016/S0006-8993(02)03547-3 PubMed DOI

Rawson R. L., Yam L., Weimer R. M., Bend E. G., Hartwieg E., Horvitz H. R., et al. . (2014). Axons degenerate in the absence of mitochondria in C. elegans. Curr. Biol. 24, 760–765. 10.1016/j.cub.2014.02.025 PubMed DOI PMC

Readnower R. D., Pandya J. D., McEwen M. L., Pauly J. R., Springer J. E., Sullivan P. G. (2011). Post-injury administration of the mitochondrial permeability transition pore inhibitor, NIM811, is neuroprotective and improves cognition after traumatic brain injury in rats. J. Neurotrauma 28, 1845–1853. 10.1089/neu.2011.1755 PubMed DOI PMC

Ribas V. T., Koch J. C., Michel U., Bähr M., Lingor P. (2017). Attenuation of axonal degeneration by calcium channel inhibitors improves retinal ganglion cell survival and regeneration after optic nerve crush. Mol. Neurobiol. 54, 72–86. 10.1007/s12035-015-9676-2 PubMed DOI

Rosenberg S. S., Spitzer N. C. (2011). Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, a004259. 10.1101/cshperspect.a004259 PubMed DOI PMC

Sajic M., Mastrolia V., Lee C. Y., Trigo D., Sadeghian M., Mosley A. J., et al. . (2013). Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLoS Biol. 11, e1001754. 10.1371/journal.pbio.1001754 PubMed DOI PMC

Sanz-Blasco S., Valero R. A., Rodríguez-Crespo I., Villalobos C., Núñez L. (2008). Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS ONE 3, e2718. 10.1371/journal.pone.0002718 PubMed DOI PMC

Saotome M., Safiulina D., Szabadkai G., Das S., Fransson A., Aspenstrom P., et al. . (2008). Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl. Acad. Sci. U.S.A. 105, 20728–20733. 10.1073/pnas.0808953105 PubMed DOI PMC

Saxton W. M., Hollenbeck P. J. (2012). The axonal transport of mitochondria. J. Cell Sci. 125, 2095–2104. 10.1242/jcs.053850 PubMed DOI PMC

Scheib J., Höke A. (2013). Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 9, 668–676. 10.1038/nrneurol.2013.227 PubMed DOI

Schon E. A., Przedborski S. (2011). Mitochondria: the next (neurode)generation. Neuron 70, 1033–1053. 10.1016/j.neuron.2011.06.003 PubMed DOI PMC

Schrank S., Barrington N., Stutzmann G. E. (2020). Calcium-handling defects and neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 12, a035212. 10.1101/cshperspect.a035212 PubMed DOI PMC

Seager R., Lee L., Henley J. M., Wilkinson K. A. (2020). Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function. Neuronal Signal 4, NS20200008. 10.1042/NS20200008 PubMed DOI PMC

Sgobio C., Sun L., Ding J., Herms J., Lovinger D. M., Cai H. (2019). Unbalanced calcium channel activity underlies selective vulnerability of nigrostriatal dopaminergic terminals in parkinsonian mice. Sci. Rep. 9, 4857. 10.1038/s41598-019-41091-7 PubMed DOI PMC

Sheng Z.-H., Cai Q. (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13, 77–93. 10.1038/nrn3156 PubMed DOI PMC

Shepherd G. M., Harris K. M. (1998). Three-dimensional structure and composition of CA3–>CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310. 10.1523/JNEUROSCI.18-20-08300.1998 PubMed DOI PMC

Shields L. Y., Kim H., Zhu L., Haddad D., Berthet A., Pathak D., et al. . (2015). Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis. 6, e1725. 10.1038/cddis.2015.94 PubMed DOI PMC

Shigeoka T., Jung H., Jung J., Turner-Bridger B., Ohk J., Lin J. Q., et al. . (2016). Dynamic axonal translation in developing and mature visual circuits. Cell 166, 181–192. 10.1016/j.cell.2016.05.029 PubMed DOI PMC

Shin J. E., Miller B. R., Babetto E., Cho Y., Sasaki Y., Qayum S., et al. . (2012). SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl. Acad. Sci. U.S.A. 109, E3696–E3705. 10.1073/pnas.1216204109 PubMed DOI PMC

Smith E. F., Shaw P. J., De Vos K. J. (2019). The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 710, 132933. 10.1016/j.neulet.2017.06.052 PubMed DOI

Smit-Rigter L., Rajendran R., Silva C. A., Spierenburg L., Groeneweg F., Ruimschotel E. M., et al. . (2016). Mitochondrial dynamics in visual cortex are limited in vivo and not affected by axonal structural plasticity. Curr. Biol. 26, 2609–2616. 10.1016/j.cub.2016.07.033 PubMed DOI

Song Z., Ghochani M., McCaffery J. M., Frey T. G., Chan D. C. (2009). Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol. Biol. Cell 20, 3525–3532. 10.1091/mbc.e09-03-0252 PubMed DOI PMC

Spillane M., Ketschek A., Merianda T. T., Twiss J. L., Gallo G. (2013). Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 5, 1564–1575. 10.1016/j.celrep.2013.11.022 PubMed DOI PMC

Staal J. A., Dickson T. C., Gasperini R., Liu Y., Foa L., Vickers J. C. (2010). Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J. Neurochem. 112, 1147–1155. 10.1111/j.1471-4159.2009.06531.x PubMed DOI

Stavsky A., Stoler O., Kostic M., Katoshevsky T., Assali E. A., Savic I., et al. . (2021). Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation. Commun. Biol. 4, 666. 10.1038/s42003-021-02312-w PubMed DOI PMC

Stirling D. P., Cummins K., Wayne Chen S. R., Stys P. (2014). Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons. Ann. Neurol. 75, 220–229. 10.1002/ana.24099 PubMed DOI

Stokin G. B., Lillo C., Falzone T. L., Brusch R. G., Rockenstein E., Mount S. L., et al. . (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288. 10.1126/science.1105681 PubMed DOI

Stone J. R., Singleton R. H., Povlishock J. T. (2001). Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp. Neurol. 172, 320–331. 10.1006/exnr.2001.7818 PubMed DOI

Stowers R. S., Megeath L. J., Górska-Andrzejak J., Meinertzhagen I. A., Schwarz T. L. (2002). Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063–1077. 10.1016/S0896-6273(02)01094-2 PubMed DOI

Sudhof T. C. (2004). The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547. 10.1146/annurev.neuro.26.041002.131412 PubMed DOI

Tamada H., Kiryu-Seo S., Hosokawa H., Ohta K., Ishihara N., Nomura M., et al. . (2017). Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM. J. Comp. Neurol. 525, 2535–2548. 10.1002/cne.24213 PubMed DOI

Tang-Schomer M. D., Johnson V. E., Baas P. W., Stewart W., Smith D. H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol. 233, 364–372. 10.1016/j.expneurol.2011.10.030 PubMed DOI PMC

Tang-Schomer M. D., Patel A. R., Baas P. W., Smith D. H. (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 24, 1401–1410. 10.1096/fj.09-142844 PubMed DOI PMC

Toda T., Kadono T., Hoshiai M., Eguchi Y., Nakazawa S., Nakazawa H., et al. . (2007). Na+/H+ exchanger inhibitor cariporide attenuates the mitochondrial Ca2+ overload and PTP opening. Am. J. Physiol. Heart Circ. Physiol. 293, H3517–H3523. 10.1152/ajpheart.00483.2006 PubMed DOI

Trevisan T., Pendin D., Montagna A., Bova S., Ghelli A. M., Daga A. (2018). Manipulation of mitochondria dynamics reveals separate roles for form and function in mitochondria distribution. Cell Rep. 23, 1742–1753. 10.1016/j.celrep.2018.04.017 PubMed DOI

Ueda K., Shinohara S., Yagami T., Asakura K., Kawasaki K. (1997). Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals. J. Neurochem. 68, 265–271. 10.1046/j.1471-4159.1997.68010265.x PubMed DOI

van Spronsen M., Mikhaylova M., Lipka J., Schlager M. A., Kuijpers M., Wulf P. S., et al. . (2013). TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77, 485–502. 10.1016/j.neuron.2012.11.027 PubMed DOI

Vargas M. E., Yamagishi Y., Tessier-Lavigne M., Sagasti A. (2015). Live imaging of calcium dynamics during axon degeneration reveals two functionally distinct phases of calcium influx. J. Neurosci. 35, 15026–15038. 10.1523/JNEUROSCI.2484-15.2015 PubMed DOI PMC

Verhoeven K., Claeys K. G., Züchner S., Schröder J. M., Weis J., Ceuterick C., et al. . (2006). MFN2 mutation distribution and genotype/phenotype correlation in charcot-marie-tooth type 2. Brain 129, 2093–2102. 10.1093/brain/awl126 PubMed DOI

Verstreken P., Ly C. V., Venken K. J., Koh T. W., Zhou Y., Bellen H. J. (2005). Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378. 10.1016/j.neuron.2005.06.018 PubMed DOI

Villegas R., Martinez N. W., Lillo J., Pihan P., Hernandez D., Twiss J. L., et al. . (2014). Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J. Neurosci. 34, 7179–7189. 10.1523/JNEUROSCI.4784-13.2014 PubMed DOI PMC

Wan B., LaNoue K. F., Cheung J. Y., Scaduto R. C. (1989). Regulation of citric acid cycle by calcium. J. Biol. Chem. 264, 13430–13439. 10.1016/S0021-9258(18)80015-1 PubMed DOI

Wang B., Huang M., Shang D., Yan X., Zhao B., Zhang X. (2021). Mitochondrial behavior in axon degeneration and regeneration. Front. Aging Neurosci. 13, 650038. 10.3389/fnagi.2021.650038 PubMed DOI PMC

Wang Q., Tian J., Chen H., Du H., Guo L. (2019). Amyloid beta-mediated KIF5A deficiency disrupts anterograde axonal mitochondrial movement. Neurobiol. Dis. 127, 410–418. 10.1016/j.nbd.2019.03.021 PubMed DOI

Wang X., Schwarz T. L. (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174. 10.1016/j.cell.2008.11.046 PubMed DOI PMC

Wang X., Yan M. H., Fujioka H., Liu J., Wilson-Delfosse A., Chen S. G., et al. . (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 21, 1931–1944. 10.1093/hmg/dds003 PubMed DOI PMC

Weber M. T., Arena J. D., Xiao R., Wolf J. A., Johnson V. E. (2019). CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury. Brain Pathol. 29, 437–450. 10.1111/bpa.12677 PubMed DOI PMC

Wilson L., Stewart W., Dams-O'Connor K., Diaz-Arrastia R., Horton L., Menon D. K., et al. . (2017). The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 16, 813–825. 10.1016/S1474-4422(17)30279-X PubMed DOI PMC

Witte M. E., Bø L., Rodenburg R. J., Belien J. A., Musters R., Hazes T., et al. . (2009). Enhanced number and activity of mitochondria in multiple sclerosis lesions. J. Pathol. 219, 193–204. 10.1002/path.2582 PubMed DOI

Wolf J. A., Stys P. K., Lusardi T., Meaney D., Smith D. H. (2001). Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. 21, 1923–1930. 10.1523/JNEUROSCI.21-06-01923.2001 PubMed DOI PMC

Woolums B. M., McCray B. A., Sung H., Tabuchi M., Sullivan J. M., Ruppell K. T., et al. . (2020). TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca2. Nat. Commun. 11, 2679. 10.1038/s41467-020-16411-5 PubMed DOI PMC

Xiong Y., Gu Q., Peterson P. L., Muizelaar J. P., Lee C. P. (1997). Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma 14, 23–34. 10.1089/neu.1997.14.23 PubMed DOI

Xu Y., Chen M., Hu B., Huang R., Hu B. (2017). In vivo imaging of mitochondrial transport in single-axon regeneration of zebrafish mauthner cells. Front. Cell. Neurosci. 11, 4. 10.3389/fncel.2017.00004 PubMed DOI PMC

Xu Y. F., Gendron T. F., Zhang Y. J., Lin W. L., D'Alton S., Sheng H., et al. . (2010). Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J. Neurosci. 30, 10851–10859. 10.1523/JNEUROSCI.1630-10.2010 PubMed DOI PMC

Yang Y., Ouyang Y., Yang L., Beal M. F., McQuibban A., Vogel H., et al. . (2008). Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl. Acad. Sci. U.S.A. 105, 7070–7075. 10.1073/pnas.0711845105 PubMed DOI PMC

Yi M., Weaver D., Hajnóczky G. (2004). Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol. 167, 661–672. 10.1083/jcb.200406038 PubMed DOI PMC

Yuen T. J., Browne K. D., Iwata A., Smith D. H. (2009). Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. J. Neurosci. Res. 87, 3620–3625. 10.1002/jnr.22161 PubMed DOI PMC

Zambonin J. L., Zhao C., Ohno N., Campbell G. R., Engeham S., Ziabreva I., et al. . (2011). Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 134, 1901–1913. 10.1093/brain/awr110 PubMed DOI PMC

Zhang L., Trushin S., Christensen T. A., Tripathi U., Hong C., Geroux R. E., et al. . (2018). Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol. Dis. 114, 1–16. 10.1016/j.nbd.2018.02.003 PubMed DOI PMC

Zhao Y., Song E., Wang W., Hsieh C. H., Wang X., Feng W., et al. . (2021). Metaxins are core components of mitochondrial transport adaptor complexes. Nat. Commun. 12, 83. 10.1038/s41467-020-20346-2 PubMed DOI PMC

Zhou B., Yu P., Lin M. Y., Sun T., Chen Y., Sheng Z. H. (2016). Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 214, 103–119. 10.1083/jcb.201605101 PubMed DOI PMC

Zhou Y., Carmona S., Muhammad A. K. M. G., Bell S., Landeros J., Vazquez M., et al. . (2019). Restoring mitofusin balance prevents axonal degeneration in a charcot-marie-tooth type 2A model. J. Clin. Invest. 129, 1756–1771. 10.1172/JCI124194 PubMed DOI PMC

Zilocchi M., Finzi G., Lualdi M., Sessa F., Fasano M., Alberio T. (2018). Mitochondrial alterations in Parkinson's disease human samples and cellular models. Neurochem. Int. 118, 61–72. 10.1016/j.neuint.2018.04.013 PubMed DOI

Ziogas N. K., Koliatsos V. E. (2018). Primary traumatic axonopathy in mice subjected to impact acceleration: a reappraisal of pathology and mechanisms with high-resolution anatomical methods. J. Neurosci. 38, 4031–4047. 10.1523/JNEUROSCI.2343-17.2018 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...