Unraveling axonal mechanisms of traumatic brain injury

. 2022 Sep 21 ; 10 (1) : 140. [epub] 20220921

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36131329
Odkazy

PubMed 36131329
PubMed Central PMC9494812
DOI 10.1186/s40478-022-01414-8
PII: 10.1186/s40478-022-01414-8
Knihovny.cz E-zdroje

Axonal swellings (AS) are one of the neuropathological hallmark of axonal injury in several disorders from trauma to neurodegeneration. Current evidence proposes a role of perturbed Ca2+ homeostasis in AS formation, involving impaired axonal transport and focal distension of the axons. Mechanisms of AS formation, in particular moments following injury, however, remain unknown. Here we show that AS form independently from intra-axonal Ca2+ changes, which are required primarily for the persistence of AS in time. We further show that the majority of axonal proteins undergoing de/phosphorylation immediately following injury belong to the cytoskeleton. This correlates with an increase in the distance of the actin/spectrin periodic rings and with microtubule tracks remodeling within AS. Observed cytoskeletal rearrangements support axonal transport without major interruptions. Our results demonstrate that the earliest axonal response to injury consists in physiological adaptations of axonal structure to preserve function rather than in immediate pathological events signaling axonal destruction.

Zobrazit více v PubMed

Faul M, Coronado V. Epidemiology of traumatic brain injury. Handb Clin Neurol. 2015;127:3–13. doi: 10.1016/B978-0-444-52892-6.00001-5. PubMed DOI

Rand CW, Courville CB. Histologic changes in the brain in cases of fatal injury to the head; alterations in nerve cells. Arch Neurol Psychiatry. 1946;55:79–110. doi: 10.1001/archneurpsyc.1946.02300130003001. PubMed DOI

Ziogas NK, Koliatsos VE. Primary traumatic axonopathy in mice subjected to impact acceleration: a reappraisal of pathology and mechanisms with high-resolution anatomical methods. J Neurosci. 2018;38(16):4031–4047. doi: 10.1523/JNEUROSCI.2343-17.2018. PubMed DOI PMC

Reeves TM, Phillips LL, Povlishock JT. Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury. Exp Neurol. 2005;196(1):126–137. doi: 10.1016/j.expneurol.2005.07.014. PubMed DOI

Geula C, Nagykery N, Nicholas A, Wu CK. Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol. 2008;67(4):309–318. doi: 10.1097/NEN.0b013e31816a1df3. PubMed DOI PMC

Yagishita S, Kimura S. Infantile neuroaxonal dystrophy (Seitelberger’s disease). A light and ultrastructural study. Acta Neuropathol. 1975;31(3):191–200. doi: 10.1007/BF00684558. PubMed DOI

Stokin GB, Goldstein LSB. Axonal transport and Alzheimer’s disease. Annu Rev Biochem. 2006;75(1):607–627. doi: 10.1146/annurev.biochem.75.103004.142637. PubMed DOI

Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, et al. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain. 2016;139(Pt 4):1094–1105. doi: 10.1093/brain/aww001. PubMed DOI PMC

Hånell A, Greer JE, McGinn MJ, Povlishock JT. Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathol. 2015;129(2):317–332. doi: 10.1007/s00401-014-1376-x. PubMed DOI

Edwards G, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I. Traumatic brain injury induces tau aggregation and spreading. J Neurotrauma. 2020;37(1):80–92. doi: 10.1089/neu.2018.6348. PubMed DOI PMC

Saatman KE, Abai B, Grosvenor A, Vorwerk CK, Smith DH, Meaney DF. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J Cereb Blood Flow Metab. 2003;23(1):34–42. doi: 10.1097/01.WCB.0000035040.10031.B0. PubMed DOI

Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron. 2017;95(6):1246–1265. doi: 10.1016/j.neuron.2017.07.010. PubMed DOI PMC

Kant A, Johnson VE, Arena JD, Dollé JP, Smith DH, Shenoy VB. Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proc Natl Acad Sci U S A. 2021;118(28):e2024961118. doi: 10.1073/pnas.2024961118. PubMed DOI PMC

Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, et al. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages: a potential therapeutic approach. Neurochem Int. 2021;150:105192. doi: 10.1016/j.neuint.2021.105192. PubMed DOI PMC

Datar A, Ameeramja J, Bhat A, Srivastava R, Mishra A, Bernal R, et al. The roles of microtubules and membrane tension in axonal beading, retraction, and atrophy. Biophys J. 2019;117(5):880–891. doi: 10.1016/j.bpj.2019.07.046. PubMed DOI PMC

Tang-Schomer MD, Patel AR, Baas PW, Smith DH. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 2010;24(5):1401–1410. doi: 10.1096/fj.09-142844. PubMed DOI PMC

Chen XH, Meaney DF, Xu BN, Nonaka M, McIntosh TK, Wolf JA, et al. Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig. J Neuropathol Exp Neurol. 1999;58(6):588–596. doi: 10.1097/00005072-199906000-00003. PubMed DOI

Cross DJ, Meabon JS, Cline MM, Richards TL, Stump AJ, Cross CG, et al. Paclitaxel reduces brain injury from repeated head trauma in mice. J Alzheimers Dis. 2019;67(3):859–874. doi: 10.3233/JAD-180871. PubMed DOI PMC

Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol. 2012;233(1):364–372. doi: 10.1016/j.expneurol.2011.10.030. PubMed DOI PMC

DiLeonardi AM, Huh JW, Raghupathi R. Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat. Brain Res. 2009;1263:174–182. doi: 10.1016/j.brainres.2009.01.021. PubMed DOI PMC

Beirowski B, Nógrádi A, Babetto E, Garcia-Alias G, Coleman MP. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J Neuropathol Exp Neurol. 2010;69(5):455–472. doi: 10.1097/NEN.0b013e3181da84db. PubMed DOI

Borgens RB, Jaffe LF, Cohen MJ. Large and persistent electrical currents enter the transected lamprey spinal cord. Proc Natl Acad Sci U S A. 1980;77(2):1209–1213. doi: 10.1073/pnas.77.2.1209. PubMed DOI PMC

Barsukova AG, Forte M, Bourdette D. Focal increases of axoplasmic Ca2+, aggregation of sodium-calcium exchanger, N-type Ca2+ channel, and actin define the sites of spheroids in axons undergoing oxidative stress. J Neurosci. 2012;32(35):12028–12037. doi: 10.1523/JNEUROSCI.0408-12.2012. PubMed DOI PMC

Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem. 2010;112(5):1147–1155. doi: 10.1111/j.1471-4159.2009.06531.x. PubMed DOI

Stirling DP, Cummins K, Wayne Chen SR, Stys P. Axoplasmic reticulum Ca2+ release causes secondary degeneration of spinal axons. Ann Neurol. 2014;75(2):220–229. doi: 10.1002/ana.24099. PubMed DOI

Gu Y, Jukkola P, Wang Q, Esparza T, Zhao Y, Brody D, et al. Polarity of varicosity initiation in central neuron mechanosensation. J Cell Biol. 2017;216(7):2179–2199. doi: 10.1083/jcb.201606065. PubMed DOI PMC

Yuen TJ, Browne KD, Iwata A, Smith DH. Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. J Neurosci Res. 2009;87(16):3620–3625. doi: 10.1002/jnr.22161. PubMed DOI PMC

Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci. 2001;21(6):1923–1930. doi: 10.1523/JNEUROSCI.21-06-01923.2001. PubMed DOI PMC

Ribas VT, Koch JC, Michel U, Bähr M, Lingor P. Attenuation of axonal degeneration by calcium channel inhibitors improves retinal ganglion cell survival and regeneration after optic nerve crush. Mol Neurobiol. 2017;54(1):72–86. doi: 10.1007/s12035-015-9676-2. PubMed DOI

Hemphill MA, Dabiri BE, Gabriele S, Kerscher L, Franck C, Goss JA, et al. A possible role for integrin signaling in diffuse axonal injury. PLoS ONE. 2011;6(7):e22899. doi: 10.1371/journal.pone.0022899. PubMed DOI PMC

Dubreuil CI, Marklund N, Deschamps K, McIntosh TK, McKerracher L. Activation of Rho after traumatic brain injury and seizure in rats. Exp Neurol. 2006;198(2):361–369. doi: 10.1016/j.expneurol.2005.12.002. PubMed DOI

Chung RS, Staal JA, McCormack GH, Dickson TC, Cozens MA, Chuckowree JA, et al. Mild axonal stretch injury in vitro induces a progressive series of neurofilament alterations ultimately leading to delayed axotomy. J Neurotrauma. 2005;22(10):1081–1091. doi: 10.1089/neu.2005.22.1081. PubMed DOI

Garland P, Broom LJ, Quraishe S, Dalton PD, Skipp P, Newman TA, et al. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton. PLoS ONE. 2012;7(10):e47552. doi: 10.1371/journal.pone.0047552. PubMed DOI PMC

Nijssen J, Aguila J, Hoogstraaten R, Kee N, Hedlund E. Axon-Seq decodes the motor axon transcriptome and its modulation in response to ALS. Stem Cell Rep. 2018;11(6):1565–1578. doi: 10.1016/j.stemcr.2018.11.005. PubMed DOI PMC

Taylor AM, Dieterich DC, Ito HT, Kim SA, Schuman EM. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron. 2010;66(1):57–68. doi: 10.1016/j.neuron.2010.03.022. PubMed DOI PMC

Vugmeyster L, McKnight CJ. Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain. J Biomol NMR. 2009;43(1):39–50. doi: 10.1007/s10858-008-9289-4. PubMed DOI PMC

Juanes-Garcia A, Chapman JR, Aguilar-Cuenca R, Delgado-Arevalo C, Hodges J, Whitmore LA, et al. A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front-back polarity. J Cell Biol. 2015;209(1):23–32. doi: 10.1083/jcb.201407059. PubMed DOI PMC

Sun C, Zheng J, Cheng S, Feng D, He J. EBP50 phosphorylation by Cdc2/Cyclin B kinase affects actin cytoskeleton reorganization and regulates functions of human breast cancer cell line MDA-MB-231. Mol Cells. 2013;36(1):47–54. doi: 10.1007/s10059-013-0014-0. PubMed DOI PMC

Devaux S, Poulain FE, Devignot V, Lachkar S, Irinopoulou T, Sobel A. Specific serine-proline phosphorylation and glycogen synthase kinase 3β-directed subcellular targeting of stathmin 3/Sclip in neurons. J Biol Chem. 2012;287(26):22341–22353. doi: 10.1074/jbc.M112.344044. PubMed DOI PMC

Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 2013;339(6118):452–456. doi: 10.1126/science.1232251. PubMed DOI PMC

Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 2004;165(2):357–371. doi: 10.1016/S0002-9440(10)63303-2. PubMed DOI PMC

Serbest G, Horwitz J, Barbee K. The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma. 2005;22(1):119–132. doi: 10.1089/neu.2005.22.119. PubMed DOI

Kilinc D, Gallo G, Barbee KA. Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp Neurol. 2008;212(2):422–430. doi: 10.1016/j.expneurol.2008.04.025. PubMed DOI

Greer JE, Hånell A, McGinn MJ, Povlishock JT. Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol. 2013;126(1):59–74. doi: 10.1007/s00401-013-1119-4. PubMed DOI PMC

Pullarkat PA, Dommersnes P, Fernández P, Joanny JF, Ott A. Osmotically driven shape transformations in axons. Phys Rev Lett. 2006;96(4):048104. doi: 10.1103/PhysRevLett.96.048104. PubMed DOI

Costa AR, Sousa SC, Pinto-Costa R, Mateus JC, Lopes CDF, Costa AC, et al. The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. eLife. 2020;9:e55471. doi: 10.7554/eLife.55471. PubMed DOI PMC

Fan A, Tofangchi A, Kandel M, Popescu G, Saif T. Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter. Sci Rep. 2017;7(1):14188. doi: 10.1038/s41598-017-13830-1. PubMed DOI PMC

Charras GT, Hu CK, Coughlin M, Mitchison TJ. Reassembly of contractile actin cortex in cell blebs. J Cell Biol. 2006;175(3):477–490. doi: 10.1083/jcb.200602085. PubMed DOI PMC

Hannemann S, Madrid R, Stastna J, Kitzing T, Gasteier J, Schönichen A, et al. The Diaphanous-related Formin FHOD1 associates with ROCK1 and promotes Src-dependent plasma membrane blebbing. J Biol Chem. 2008;283(41):27891–27903. doi: 10.1074/jbc.M801800200. PubMed DOI

Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 2006;18(3):276–284. doi: 10.1016/j.cellsig.2005.07.010. PubMed DOI

Wayman GA, Kaech S, Grant WF, Davare M, Impey S, Tokumitsu H, et al. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci. 2004;24(15):3786–3794. doi: 10.1523/JNEUROSCI.3294-03.2004. PubMed DOI PMC

Tararuk T, Ostman N, Li W, Björkblom B, Padzik A, Zdrojewska J, et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J Cell Biol. 2006;173(2):265–277. doi: 10.1083/jcb.200511055. PubMed DOI PMC

Reinhardt L, Kordes S, Reinhardt P, Glatza M, Baumann M, Drexler HCA, et al. Dual Inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem Cell Rep. 2019;12(3):502–517. doi: 10.1016/j.stemcr.2019.01.015. PubMed DOI PMC

Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 2010;67(9):545–554. doi: 10.1002/cm.20472. PubMed DOI PMC

Leite SC, Sampaio P, Sousa VF, Nogueira-Rodrigues J, Pinto-Costa R, Peters LL, et al. The actin-binding protein α-adducin is required for maintaining axon diameter. Cell Rep. 2016;15(3):490–498. doi: 10.1016/j.celrep.2016.03.047. PubMed DOI PMC

Chaves RS, Tran M, Holder AR, Balcer AM, Dickey AM, Roberts EA, et al. Amyloidogenic processing of amyloid precursor protein drives stretch-induced disruption of axonal transport in hiPSC-derived neurons. J Neurosci. 2021;41(49):10034–10053. doi: 10.1523/JNEUROSCI.2553-20.2021. PubMed DOI PMC

Lang-Ouellette D, Gruver KM, Smith-Dijak A, Blot FGC, Stewart CA, de Vanssay de Blavous P, et al. Purkinje cell axonal swellings enhance action potential fidelity and cerebellar function. Nat Commun. 2021;12(1):4129. doi: 10.1038/s41467-021-24390-4. PubMed DOI PMC

Babij R, Lee M, Cortés E, Vonsattel J-PG, Faust PL, Louis ED. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain. 2013;136(Pt 10):3051–3061. doi: 10.1093/brain/awt238. PubMed DOI PMC

Marion CM, Radomski KL, Cramer NP, Galdzicki Z, Armstrong RC. Experimental traumatic brain injury identifies distinct early and late phase axonal conduction deficits of white matter pathophysiology, and reveals intervening recovery. J Neurosci. 2018;38(41):8723–8736. doi: 10.1523/JNEUROSCI.0819-18.2018. PubMed DOI PMC

von Reyn CR, Mott RE, Siman R, Smith DH, Meaney DF. Mechanisms of calpain mediated proteolysis of voltage gated sodium channel α-subunits following in vitro dynamic stretch injury. J Neurochem. 2012;121(5):793–805. doi: 10.1111/j.1471-4159.2012.07735.x. PubMed DOI PMC

Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43. doi: 10.1016/j.expneurol.2012.01.013. PubMed DOI PMC

Rudrabhatla P, Grant P, Jaffe H, Strong MJ, Pant HC. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer’s disease by iTRAQ. FASEB J. 2010;24(11):4396–4407. doi: 10.1096/fj.10-157859. PubMed DOI PMC

Rudrabhatla P, Jaffe H, Pant HC. Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer’s NFTs. FASEB J. 2011;25(11):3896–3905. doi: 10.1096/fj.11-181297. PubMed DOI PMC

Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55(8):1158–1166. doi: 10.1212/WNL.55.8.1158. PubMed DOI

Schoen I, Hu W, Klotzsch E, Vogel V. Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett. 2010;10(5):1823–1830. doi: 10.1021/nl100533c. PubMed DOI PMC

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom. 2014;13(9):2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Shah AD, Goode RJA, Huang C, Powell DR, Schittenhelm RB. LFQ-analyst: an easy-to-use interactive web platform to analyze and visualize label-free proteomics data preprocessed with MaxQuant. J Proteome Res. 2020;19(1):204–211. doi: 10.1021/acs.jproteome.9b00496. PubMed DOI

Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47(W1):W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC

Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6(7):e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Casado P, Rodriguez-Prados JC, Cosulich SC, Guichard S, Vanhaesebroeck B, Joel S, et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal. 2013;6(268):rs6. doi: 10.1126/scisignal.2003573. PubMed DOI

Metz KS, Deoudes EM, Berginski ME, Jimenez-Ruiz I, Aksoy BA, Hammerbacher J, et al. Coral: clear and customizable visualization of human kinome data. Cell Syst. 2018;7(3):347–350.e1. doi: 10.1016/j.cels.2018.07.001. PubMed DOI PMC

D’Este E, Kamin D, Velte C, Göttfert F, Simons M, Hell SW. Subcortical cytoskeleton periodicity throughout the nervous system. Sci Rep. 2016;6:22741. doi: 10.1038/srep22741. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...