Most cited article - PubMed ID 33888793
New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae
With rare exceptions, the shape and appearance of lichen thalli are determined by the fungal partner; thus, mycobiont identity is normally used for lichen identification. However, it has repeatedly been shown in recent decades that phenotypic data often does not correspond with fungal gene evolution. Here, we report such a case in a three-species complex of red-fruited Cladonia lichens, two of which clearly differ morphologically, chemically, ecologically and in distribution range. We analysed 64 specimens of C. bellidiflora, C. polydactyla and C. umbricola, mainly collected in Europe, using five variable mycobiont-specific and two photobiont-specific molecular markers. All mycobiont markers exhibited very low variability and failed to separate the species. In comparison, photobiont identity corresponded better with lichen phenotype and separated esorediate C. bellidiflora from the two sorediate taxa. These results can be interpreted either as an unusual case of lichen photomorphs or as an example of recent speciation, in which phenotypic differentiation precedes the separation of the molecular markers. We hypothesise that association with different photobionts, which is probably related to habitat differentiation, may have triggered speciation in the mycobiont species.
- Keywords
- Asterochloris, Cladonia, barcoding, lichens, speciation, species delimitation,
- Publication type
- Journal Article MeSH
Lichens are an iconic example of symbiotic systems whose ecology is shaped by the requirements of the symbionts. Previous studies suggest that fungal (mycobionts) as well as photosynthesizing (phycobionts or cyanobionts) partners have a specific range of acceptable symbionts that can be chosen according to specific environmental conditions. This study aimed to investigate the effects of climatic conditions and mycobiont identity on phycobiont distribution within the lichen genera Stereocaulon, Cladonia, and Lepraria. The study area comprised the Canary Islands, Madeira, Sicily, and the Aeolian Islands, spanning a wide range of climatic conditions. These islands are known for their unique and diverse fauna and flora; however, lichen phycobionts have remained unstudied in most of these areas. In total, we genetically analyzed 339 lichen samples. The phycobiont pool differed significantly from that outside the studied area. Asterochloris mediterranea was identified as the most abundant phycobiont. However, its distribution was limited by climatic constraints. Other species of Asterochloris and representatives of the genera Chloroidium, Vulcanochloris, and Myrmecia were also recovered as phycobionts. The selection of symbiotic partners from the local phycobiont pool was driven by mycobiont specificity (i.e., the taxonomic range of acceptable partners) and the environmental conditions, mainly temperature. Interestingly, the dominant fungal species responded differently in their selection of algal symbionts along the environmental gradients. Cladonia rangiformis associated with its phycobiont A. mediterranea in a broader range of temperatures than Stereocaulon azoreum, which favors other Asterochloris species along most of the temperature gradient. Stereocaulon vesuvianum associated with Chloroidium spp., which also differed in their temperature optima. Finally, we described Stereocaulon canariense as a new endemic species ecologically distinct from the other Stereocaulon species on the Canary Islands.
- Keywords
- Asterochloris mediterranea, Macaronesia, Stereocaulon canariense, lichen, phycobiont sharing, specificity, symbiosis, temperature gradient,
- Publication type
- Journal Article MeSH
Climatic factors, soil chemistry and geography are considered as major factors affecting lichen distribution and diversity. To determine how these factors limit or support the associations between the symbiotic partners, we revise the lichen symbiosis as a network of relationships here. More than one thousand thalli of terricolous Cladonia lichens were collected at sites with a wide range of soil chemical properties from seven biogeographical regions of Europe. A total of 18 OTUs of the algal genus Asterochloris and 181 OTUs of Cladonia mycobiont were identified. We displayed all realized pairwise mycobiont-photobiont relationships and performed modularity analysis. It revealed four virtually separated modules of cooperating OTUs. The modules differed in mean annual temperature, isothermality, precipitation, evapotranspiration, soil pH, nitrogen, and carbon contents. Photobiont switching was strictly limited to algae from one module, i.e., algae of similar ecological preferences, and only few mycobionts were able to cooperate with photobionts from different modules. Thus, Cladonia mycobionts generally cannot widen their ecological niches through photobiont switching. The modules also differed in the functional traits of the mycobionts, e.g., sexual reproduction rate, presence of soredia, and thallus type. These traits may represent adaptations to the environmental conditions that drive the differentiation of the modules. In conclusion, the promiscuity in Cladonia mycobionts is strictly limited by climatic factors and soil chemistry.
- Keywords
- Asterochloris, Cladonia, green algae, lichens, photobiont, specificity, symbiosis,
- Publication type
- Journal Article MeSH