Most cited article - PubMed ID 33910563
Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility
Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in the human gene encoding histone-3-lysine-4,36-trimethyltransferase PRDM9 are associated with aneuploidy, and other variants with ovarian function reduced by premature ovarian failure (POF), but no link between POF and aneuploidy has been revealed. SHR/OlaIpcv rat females lacking PRDM9 manifest POF-a reduced follicle number, litter size, and reproductive age. Here, we explored this model to test how POF relates to oocyte euploidy. The mutant rat females displayed increased oocyte aneuploidy and embryonic death of their offspring compared to controls. Because rat PRDM9 positions meiotic DNA breaks, we investigated the repair of these breaks. Fertile control rodents carry pachytene oocytes with synapsed homologous chromosomes and repaired breaks, while sterile Prdm9-deficient mice carry pachytene-like oocytes with many persisting breaks and asynapsed chromosomes. However, most PRDM9-lacking rat oocytes displayed a few persisting breaks and non-homologous synapsis (NHS). HORMAD2 protein serves as a barrier to sister-chromatid repair and a signal for the synapsis and DNA repair checkpoints. NHS but not asynapsis was associated with HORMAD2 levels similar to the levels on rat pachytene chromosomes with homologous synapsis. NHS was accompanied by crossing-over decreased below the minimum that is essential for euploidy. We argue that the increased mutant rat aneuploidy is due to NHS, which allows some oocytes to pass meiotic checkpoints without one crossing-over per chromosomal pair, leading to segregation errors, and thereby NHS links POF to aneuploidy.
- MeSH
- Aneuploidy * MeSH
- Chromosomes MeSH
- Histone-Lysine N-Methyltransferase * genetics metabolism MeSH
- Rats MeSH
- Meiosis * genetics MeSH
- Oocytes metabolism MeSH
- Chromosome Pairing * genetics MeSH
- Rats, Inbred SHR MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase * MeSH
BACKGROUND: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS: We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS: We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
- Keywords
- Fertility, Meiotic recombination, PRDM9, Rattus norvegicus,
- MeSH
- Chromatin MeSH
- DNA Breaks, Double-Stranded MeSH
- Fertility genetics MeSH
- Histone-Lysine N-Methyltransferase genetics MeSH
- Rats MeSH
- Meiosis * genetics MeSH
- Mice MeSH
- Rats, Inbred SHR MeSH
- Spermatogenesis genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Chromatin MeSH
- Histone-Lysine N-Methyltransferase MeSH
- prdm9 protein, mouse MeSH Browser