Nejvíce citovaný článek - PubMed ID 34072982
Recycled Cellulose Fiber Reinforced Plaster
Probabilistic procedures considering the durability with respect to corrosion of reinforcement caused by aggressive substances are widely applied; however, they are based on narrow assumptions. The aspects need to be evaluated both in terms of the search for suitable application of the various experimental results and in terms of their impact on the result of the stochastic assessment itself. In this article, sensitivity analysis was used as an ideal tool to prove how input parameters affect the results of the evaluation, with consideration of different types of concrete (ordinary or self-compacting with and without fibres). These concretes may be used in aggressive environments, as an industrial floor or as a part of the load-bearing bridge structure. An example of a reinforced concrete bridge deck was selected as the solved structure. The results show that in the case of a classic evaluation, a larger amount of fibre reports a lower resistance of concrete, which contradicts the assumptions. The sensitivity analysis then shows that self-compacting concrete is more sensitive to the values of the diffusion coefficient, and with the consideration of fibres, the effect is even greater.
- Klíčová slova
- concrete, fibres, self-compacting concrete, sensitivity analysis, stochastic analysis,
- Publikační typ
- časopisecké články MeSH
Sustainable development in civil engineering is the clear and necessary goal of the current generation. There are many possibilities for reducing the use of depletable resources. One of them is to use renewable and recyclable materials on a larger scale in the construction industry. One possibility is the application of natural thermal insulators. A typical example is a crushed straw, which is generated as agricultural waste in the Czech Republic. Due to its small dimensions and good thermal insulation parameters, this material can also be used as blown thermal insulation. The research aims to examine the fire resistance of crushed straw as blown insulation. The single-flame source fire test results, thermal attack by a single burning item (SBI) test and large-scale test of a perimeter wall segment are shown. The results show that blown insulation made of crushed straw meets the requirements of fire protection. In addition, crushed straw can be also used to protect load-bearing structures due to its behaviour. This article also shows the production process of crushed straw used as blown insulation in brief.
- Klíčová slova
- blown insulation, civil engineering, crushed straw, fire reaction class, fire test, sustainability,
- Publikační typ
- časopisecké články MeSH