Most cited article - PubMed ID 34239124
Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
- Keywords
- Chemosensation, Gating, Nociception, Sensory transduction, TRPA1 channel, Thermosensation,
- MeSH
- Allosteric Regulation MeSH
- Cryoelectron Microscopy methods MeSH
- Transient Receptor Potential Channels metabolism chemistry physiology MeSH
- TRPA1 Cation Channel * metabolism chemistry physiology MeSH
- Humans MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Transient Receptor Potential Channels MeSH
- TRPA1 Cation Channel * MeSH
- TRPA1 protein, human MeSH Browser
TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.
- MeSH
- Cryoelectron Microscopy MeSH
- Cannabidiol * pharmacology MeSH
- Cannabinoids * pharmacology MeSH
- TRPV Cation Channels metabolism MeSH
- Rats MeSH
- Humans MeSH
- Ligands MeSH
- Probenecid pharmacology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cannabidiol * MeSH
- Cannabinoids * MeSH
- TRPV Cation Channels MeSH
- Ligands MeSH
- Probenecid MeSH
- TRPV2 protein, human MeSH Browser
- Trpv2 protein, rat MeSH Browser
TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
- MeSH
- Alanine MeSH
- Ankyrin Repeat * MeSH
- TRPA1 Cation Channel genetics metabolism MeSH
- Humans MeSH
- Tryptophan MeSH
- Thermosensing MeSH
- Hot Temperature * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Alanine MeSH
- TRPA1 Cation Channel MeSH
- TRPA1 protein, human MeSH Browser
- Tryptophan MeSH