Nejvíce citovaný článek - PubMed ID 34428476
Longitudinal evidence for immunosenescence and inflammaging in free-living great tits
During early ontogeny, microbiome affects development of the gastrointestinal tract, immunity, and survival in vertebrates. Bird eggs are thought to be (1) initially sterile (sterile egg hypothesis) and (2) colonized after oviposition through horizontal trans-shell migration, or (3) initially seeded with bacteria by vertical transfer from mother oviduct. To date, however, little empirical data illuminate the contribution of these mechanisms to gut microbiota formation in avian embryos. We investigated microbiome of the egg content (day 0; E0-egg), embryonic gut at day 13 (E13) and female faeces in a free-living passerine, the great tit (Parus major), using a methodologically advanced procedure combining 16S rRNA gene sequencing and microbe-specific qPCR assays. Our metabarcoding revealed that the avian egg is (nearly) sterile, but acquires a slightly richer microbiome during the embryonic development. Of the three potentially pathogenic bacteria targeted by qPCR, only Dietzia was found in E0-egg (yet also in negative controls), E13 gut and female samples, which might indicate possible vertical transfer. Unlike in poultry, we have shown that major bacterial colonization of the gut in passerines does not occur before hatching. We emphasize that protocols that carefully check for environmental contamination are critical in studies with low-bacterial biomass samples.
- Klíčová slova
- egg microbiome, embryo, gastrointestinal tract microbiota, passerine bird, pathogenic bacteria, sterile egg,
- MeSH
- Bacteria genetika MeSH
- mikrobiota * MeSH
- Passeriformes * mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
While seasonal trends in testosterone levels are known from cross-cohort studies, data on testosterone inter-annual individual repeatability in wild birds are rare. Also, our understanding of hormonal age-dependent changes in testosterone levels is limited. We assessed plasma testosterone levels in 105 samples originating from 49 repeatedly captured free-living great tits (Parus major) sampled during the nesting to investigate their relative long-term repeatability and within-individual changes. Furthermore, we examined the inter-annual repeatability of condition-related traits (carotenoid- and melanin-based plumage ornamentation, ptilochronological feather growth rate, body mass, and haematological heterophil/lymphocyte ratio) and their relationships to testosterone levels. We show that testosterone levels are inter-annually repeatable in females, with a non-significant pattern in males, both in absolute values and individual ranks (indicating the maintenance of relative status in a population). In males, we found a quadratic dependence of testosterone levels on age, with a peak in midlife. In contrast, female testosterone levels showed no age-dependent trends. The inter-annual repeatability of condition-related traits ranged from zero to moderate and was mostly unrelated to plasma testosterone concentrations. However, males with elevated testosterone had significantly higher carotenoid-pigmented yellow plumage brightness, a trait presumably involved in mating. Showing inter-annual repeatability in testosterone levels, this research opens the way to further understanding the causes of variation in condition-related traits. Based on a longitudinal dataset, this study demonstrates that male plasma testosterone undergoes age-related changes that may regulate resource allocation. Our results thus suggest that, unlike females, male birds undergo hormonal senescence similar to mammals.
- Klíčová slova
- Ageing, Condition-related traits, Immunity, Ontogeny, Passerine birds, Repeatability, Senescence, Testosterone,
- MeSH
- divoká zvířata MeSH
- lidé MeSH
- Passeriformes * MeSH
- peří * MeSH
- rozmnožování MeSH
- testosteron MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- testosteron MeSH