egg microbiome Dotaz Zobrazit nápovědu
During early ontogeny, microbiome affects development of the gastrointestinal tract, immunity, and survival in vertebrates. Bird eggs are thought to be (1) initially sterile (sterile egg hypothesis) and (2) colonized after oviposition through horizontal trans-shell migration, or (3) initially seeded with bacteria by vertical transfer from mother oviduct. To date, however, little empirical data illuminate the contribution of these mechanisms to gut microbiota formation in avian embryos. We investigated microbiome of the egg content (day 0; E0-egg), embryonic gut at day 13 (E13) and female faeces in a free-living passerine, the great tit (Parus major), using a methodologically advanced procedure combining 16S rRNA gene sequencing and microbe-specific qPCR assays. Our metabarcoding revealed that the avian egg is (nearly) sterile, but acquires a slightly richer microbiome during the embryonic development. Of the three potentially pathogenic bacteria targeted by qPCR, only Dietzia was found in E0-egg (yet also in negative controls), E13 gut and female samples, which might indicate possible vertical transfer. Unlike in poultry, we have shown that major bacterial colonization of the gut in passerines does not occur before hatching. We emphasize that protocols that carefully check for environmental contamination are critical in studies with low-bacterial biomass samples.
- Klíčová slova
- egg microbiome, embryo, gastrointestinal tract microbiota, passerine bird, pathogenic bacteria, sterile egg,
- MeSH
- Bacteria genetika MeSH
- mikrobiota * MeSH
- Passeriformes * mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Antimicrobial resistance (AMR) is one of the most serious threats for human health in the near future. Livestock has played an important role in the appearance of antibiotic-resistant bacteria, intestinal dysbiosis in farming animals, or the spread of AMR among pathogenic bacteria of human concern. The development of alternatives like probiotics is focused on maintaining or improving production levels while diminishing these negative effects of antibiotics. To this end, we supplied the potential probiotic Enterococcus faecalis UGRA10 in the diet of laying hens at a final concentration of 108 Colony Forming Units per gram (CFU/g) of fodder. Its effects have been analyzed by: (i) investigating the response of the ileum and caecum microbiome; and (ii) analyzing the outcome on eggs production. During the second half of the experimental period (40 to 76 days), hens fed E. faecalis UGRA10 maintained egg production, while control animals dropped egg production. Supplementation diet with E. faecalis UGRA10 significantly increased ileum and caecum bacterial diversity (higher bacterial operational taxonomic unit richness and Faith's diversity index) of laying hens, with animals fed the same diet showing a higher similarity in microbial composition. These results point out to the beneficial effects of E. faecalis UGRA10 in egg production. Future experiments are necessary to unveil the underlying mechanisms that mediate the positive response of animals to this treatment.
- Klíčová slova
- Enterococcus faecalis UGRA10, bacterial community, egg production, high-throughput sequencing, laying hens, probiotics,
- Publikační typ
- časopisecké články MeSH
In this study we characterised the development of caecal microbiota in egg laying hens over their commercial production lifespan, from the day of hatching until 60 weeks of age. Using pyrosequencing of V3/V4 variable regions of 16S rRNA genes for microbiota characterisation, we were able to define 4 different stages of caecal microbiota development. The first stage lasted for the first week of life and was characterised by a high prevalence of Enterobacteriaceae (phylum Proteobacteria). The second stage lasted from week 2 to week 4 and was characterised by nearly an absolute dominance of Lachnospiraceae and Ruminococcaceae (both phylum Firmicutes). The third stage lasted from month 2 to month 6 and was characterised by the succession of Firmicutes at the expense of Bacteroidetes. The fourth stage was typical for adult hens in full egg production aged 7 months or more and was characterised by a constant ratio of Bacteroidetes and Firmicutes formed by equal numbers of the representatives of both phyla.
- MeSH
- cékum mikrobiologie MeSH
- kur domácí růst a vývoj mikrobiologie MeSH
- longitudinální studie MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Relationships between gastrointestinal parasites (GIPs) and the gastrointestinal microbiome (GIM) are widely discussed topics across mammalian species due to their possible impact on the host's health. GIPs may change the environment determining alterations in GIM composition. We evaluated the associations between GIP infections and fecal microbiome composition in two habituated and two unhabituated groups of wild western lowland gorillas (Gorilla g. gorilla) from Dzanga Sangha Protected Areas, Central African Republic. We examined 43 fecal samples for GIPs and quantified strongylid nematodes. We characterized fecal microbiome composition through 454 pyrosequencing of the V1-V3 region of the bacterial 16S rRNA gene. Entamoeba spp. infections were associated with significant differences in abundances of bacterial taxa that likely play important roles in nutrition and metabolism for the host, besides being characteristic members of the gorilla gut microbiome. We did not observe any relationships between relative abundances of several bacterial taxa and strongylid egg counts. Based on our findings, we suggest that there is a significant relationship between fecal microbiome and Entamoeba infection in wild gorillas. This study contributes to the overall knowledge about factors involved in modulating GIM communities in great apes.
- Klíčová slova
- Entamoeba, bacteria, fecal microbiome, lowland gorilla, parasite infection, strongylid nematodes,
- Publikační typ
- časopisecké články MeSH
Poultry meat is the most common protein source of animal origin for humans. However, intensive breeding of animals in confined spaces has led to poultry colonisation by microbiota with a zoonotic potential or encoding antibiotic resistances. In this study we were therefore interested in the prevalence of selected antibiotic resistance genes and microbiota composition in feces of egg laying hens and broilers originating from 4 different Central European countries determined by real-time PCR and 16S rRNA gene pyrosequencing, respectively. strA gene was present in 1 out of 10,000 bacteria. The prevalence of sul1, sul2 and tet(B) in poultry microbiota was approx. 6 times lower than that of the strA gene. tet(A) and cat were the least prevalent being present in around 3 out of 10,000,000 bacteria forming fecal microbiome. The core chicken fecal microbiota was formed by 26 different families. Rather unexpectedly, representatives of Desulfovibrionaceae and Campylobacteraceae, both capable of hydrogen utilisation in complex microbial communities, belonged among core microbiota families. Understanding the roles of individual population members in the total metabolism of the complex community may allow for interventions which might result in the replacement of Campylobacteraceae with Desulfovibrionaceae and a reduction of Campylobacter colonisation in broilers, carcasses, and consequently poultry meat products.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- feces mikrobiologie MeSH
- kladení vajíček * MeSH
- kur domácí mikrobiologie fyziologie MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza RNA MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Chorvatsko MeSH
- Maďarsko MeSH
- Slovinsko MeSH
- Názvy látek
- antibakteriální látky MeSH
- RNA ribozomální 16S MeSH
Microbiome of the gastrointestinal tract (GIT) has been identified as one of the crucial factors influencing the health and condition of domestic animals. The global poultry industry faces the challenge of understanding the complex relationship between gut microbiota composition and performance-related traits in birds. Considerable variation exists in the results of correlational studies using either 16S rRNA profiling or metagenomics to identify bacterial taxa associated with performance, productivity, or condition in poultry (e.g., body weight, growth rate, feeding efficiency, or egg yield). In this review, we survey the existing reports, discuss variation in research approaches, and identify bacterial taxa consistently linked to improved or deteriorated performance across individual poultry-focused studies. Our survey revealed high methodological heterogeneity, which was in contrast with vastly uniform focus of the research mainly on the domestic chicken (Gallus gallus) as a model. We also show that the bacterial taxa most frequently used in manipulative experiments and commercial probiotics intended for use in poultry (e.g., species of Lactobacillus, Bacillus, Enterococcus, or Bifidobacterium) do not overlap with the bacteria consistently correlated with their improved performance (Candidatus Arthromitus, Methanobrevibacter). Our conclusions urge for increased methodological standardization of the veterinary research in this field. We highlight the need to bridge the gap between correlational results and experimental applications in animal science. To better understand causality in the observed relationships, future research should involve a broader range of host species that includes both agricultural and wild models, as well as a broader range of age groups.
- Klíčová slova
- condition, gut microbiome, performance, poultry, probiotic,
- MeSH
- chov zvířat metody MeSH
- kur domácí * mikrobiologie fyziologie MeSH
- probiotika farmakologie aplikace a dávkování MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Insect microbiota may play a wide range of roles in host physiology. Among others, microbiota can be involved in diet processing or protection against pathogens, both of which are potentially important in bryophagous (moss-feeding) insects, which survive on extreme diets and live in the stable environment of moss clumps suitable for the growth of fungi and bacteria. We treated Cytilus sericeus (Forster, 1771) (Coleoptera: Byrrhidae) as a model organism with bactericides and fungicides to test the effect of bacterial and fungal removal on egg hatching and larval development. Furthermore, we supplied larvae with adult feces to determine whether feces is a source of beneficial microbiota or pathogens. Bactericides had a positive effect, but fungicides had a negative effect on beetle fitness, both of which manifested during egg hatching. The feces did not play a positive role. Our conclusions indicate the presence of beneficial fungal microbiota associated with eggs but not transmitted through feces. Based on preliminary cultivation and fungicide tests, Fusarium or Penicillium may be important for suppressing pathogens, but their exact role needs to be further studied.
- Klíčová slova
- Fusarium, Penicillium, bactericide, fungicide, microbiota transmission,
- MeSH
- Bacteria MeSH
- brouci * MeSH
- houby MeSH
- larva MeSH
- mykobiom * MeSH
- ovum MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Blood feeding red poultry mites (RPM) serve as vectors of pathogenic bacteria and viruses among vertebrate hosts including wild birds, poultry hens, mammals, and humans. The microbiome of RPM has not yet been studied by high-throughput sequencing. RPM eggs, larvae, and engorged adult/nymph samples obtained in four poultry houses in Czechia were used for microbiome analyses by Illumina amplicon sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. A laboratory RPM population was used as positive control for transcriptome analysis by pyrosequencing with identification of sequences originating from bacteria. The samples of engorged adult/nymph stages had 100-fold more copies of 16S rRNA gene copies than the samples of eggs and larvae. The microbiome composition showed differences among the four poultry houses and among observed developmental stadia. In the adults' microbiome 10 OTUs comprised 90 to 99% of all sequences. Bartonella-like bacteria covered between 30 and 70% of sequences in RPM microbiome and 25% bacterial sequences in transcriptome. The phylogenetic analyses of 16S rRNA gene sequences revealed two distinct groups of Bartonella-like bacteria forming sister groups: (i) symbionts of ants; (ii) Bartonella genus. Cardinium, Wolbachia, and Rickettsiella sp. were found in the microbiomes of all tested stadia, while Spiroplasma eriocheiris and Wolbachia were identified in the laboratory RPM transcriptome. The microbiomes from eggs, larvae, and engorged adults/nymphs differed. Bartonella-like symbionts were found in all stadia and sampling sites. Bartonella-like bacteria was the most diversified group within the RPM microbiome. The presence of identified putative pathogenic bacteria is relevant with respect to human and animal health issues while the identification of symbiontic bacteria can lead to new control methods targeting them to destabilize the arthropod host.
- Klíčová slova
- Bartonella, Blood sucking, Mite, Poultry, Ricketsiella, Transmission, Tsukamurella, Wolbachia,
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- bakteriální RNA genetika MeSH
- Bartonella klasifikace genetika izolace a purifikace MeSH
- druhová specificita MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- roztoči růst a vývoj mikrobiologie MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bakteriální RNA MeSH
- RNA ribozomální 16S MeSH
Arthropod-associated microorganisms are important because they affect host fitness, protect hosts from pathogens, and influence the host's ability to vector pathogens. Stored product mites (Astigmata) often establish large populations in various types of food items, damaging the food by direct feeding and introducing contaminants, including their own bodies, allergen-containing feces, and associated microorganisms. Here we access the microbial structure and abundance in rearing diets, eggs, feces fraction, and mite bodies of 16 mite populations belonging to three species (Carpoglyphus lactis, Acarus siro, and Tyrophagus putrescentiae) using quantitative PCR and 16S ribosomal RNA (rRNA) gene amplicon sequencing. The mite microbiomes had a complex structure dominated by the following bacterial taxa (OTUs): (a) intracellular symbionts of the genera Cardinium and Wolbachia in the mite bodies and eggs; (b) putative gut symbionts of the genera Solitalea, Bartonella, and Sodalis abundant in mite bodies and also present in mite feces; (c) feces-associated or environmental bacteria of the genera Bacillus, Staphylococcus, and Kocuria in the diet, mite bodies, and feces. Interestingly and counterintuitively, the differences between microbial communities in various conspecific mite populations were higher than those between different mite species. To explain some of these differences, we hypothesize that the intracellular bacterial symbionts can affect microbiome composition in mite bodies, causing differences between microbial profiles. Microbial profiles differed between various sample types, such as mite eggs, bodies, and the environment (spent growth medium-SPGM). Low bacterial abundances in eggs may result in stochastic effects in parent-offspring microbial transmission, except for the intracellular symbionts. Bacteria in the rearing diet had little effect on the microbial community structure in SPGM and mite bodies. Mite fitness was positively correlated with bacterial abundance in SPGM and negatively correlated with bacterial abundances in mite bodies. Our study demonstrates critical host-microbe interactions, affecting all stages of mite growth and leading to alteration of the environmental microbiome. Correlational evidence based on absolute quantitation of bacterial 16S rRNA gene copies suggests that mite-associated microorganisms are critical for modulating important pest properties of mites by altering population growth.
- Klíčová slova
- Allergen, Bartonella, Cardinium, Eggs, Feces, Feeding, Mite, Symbionts, Wolbachia,
- MeSH
- Acaridae klasifikace růst a vývoj mikrobiologie MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- dieta MeSH
- feces mikrobiologie MeSH
- fylogeneze MeSH
- interakce mikroorganismu a hostitele MeSH
- mikrobiota * MeSH
- ovum mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Microbiome formation and assemblage are essential processes influencing proper embryonal and early-life development in neonates. In birds, transmission of microbes from the outer environment into the egg's interior has been found to shape embryo viability and hatchling phenotype. However, microbial transmission may be affected by egg-white antimicrobial proteins (AMPs), whose concentration and antimicrobial action are temperature-modulated. As both partial incubation and clutch covering with nest-lining feathers during the pre-incubation period can significantly alter temperature conditions acting on eggs, we experimentally investigated the effects of these behavioural mechanisms on concentrations of both the primary and most abundant egg-white AMPs (lysozyme and avidin) using mallard (Anas platyrhychos) eggs. In addition, we assessed whether concentrations of egg-white AMPs altered the probability and intensity of bacterial trans-shell penetration, thereby affecting hatchling morphological traits in vivo. We observed higher concentrations of lysozyme in partially incubated eggs. Clutch covering with nest-lining feathers had no effect on egg-white AMP concentration and we observed no association between concentration of egg-white lysozyme and avidin with either the probability or intensity of bacterial trans-shell penetration. The higher egg-white lysozyme concentration was associated with decreased scaled body mass index of hatchlings. These outcomes demonstrate that incubation prior to clutch completion in precocial birds can alter concentrations of particular egg-white AMPs, though with no effect on bacterial transmission into the egg in vivo. Furthermore, a higher egg white lysozyme concentration compromised hatchling body condition, suggesting a potential growth-regulating role of lysozyme during embryogenesis in precocial birds.
- Klíčová slova
- Albumen, Antimicrobial proteins, Bacterial penetration, Embryo viability, Incubation, Microorganisms, Temperature,
- Publikační typ
- časopisecké články MeSH