Most cited article - PubMed ID 34469471
Identification of pollen taxa by different microscopy techniques
Pollen is a cornerstone of life for plants. Its durability, adaptability, and complex design are the key factors to successful plant reproduction, genetic diversity, and the maintenance of ecosystems. A detailed study of its chemical composition is important to understand the mechanism of pollen-pollinator interactions, pollination processes, and allergic reactions. In this study, a multimodal approach involving Fourier transform infrared spectrometry (FTIR), direct mass spectrometry with an atmospheric solids analysis probe (ASAP), matrix-assisted laser desorption/ionization (MALDI) and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was applied for metabolite profiling. ATR-FTIR provided an initial overview of the present metabolite classes. Phenylpropanoid, lipidic, and carbohydrate structures were revealed. The hydrophobic outer layer of pollen was characterized in detail by ASAP-MS profiling, and esters, phytosterols, and terpenoids were observed. Diacyl- and triacylglycerols and carbohydrate structures were identified in MALDI-MS spectra. The MALDI-MS imaging of lipids proved to be helpful during the microscopic characterization of pollen species in their mixture. Polyphenol profiling and the quantification of important secondary metabolites were performed by UHPLC-MS in context with pollen coloration and their antioxidant and antimicrobial properties. The obtained results revealed significant chemical differences among Magnoliophyta and Pinophyta pollen. Additionally, some variations within Magnoliophyta species were observed. The obtained metabolomics data were utilized for pollen differentiation at the taxonomic scale and provided valuable information in relation to pollen interactions during reproduction and its related applications.
- Keywords
- Magnoliophyta, Pinophyta, atmospheric solids analysis probe, infrared spectrometry, mass spectrometry, matrix-assisted laser desorption/ionization, metabolite profiling, metabolomics, pollen, secondary metabolite, taxonomic differentiation, ultra-high-performance liquid chromatography,
- MeSH
- Metabolome * MeSH
- Metabolomics * methods MeSH
- Pollen * metabolism chemistry MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
Honey contains a wide range of inorganic substances. Their content can be influenced, i.e., by the type of soil on which the bee pasture is located. As part of this study, the mineral profile of 32 samples of honey from hobby beekeepers from the Czech Republic wasevaluated and then compared with soil types in the vicinity of the beehive location. Pearson's correlation coefficient was used to express the relationship between mineral substances and soil type. There was a high correlation between antroposol and Zn (R = 0.98), Pb (R = 0.96), then between ranker and Mn (0.95), then regosol and Al (R = 0.97) (p < 0.05). A high negative correlation was found between regosol and Mg (R = -0.97), Cr (R = -0.98) and between redzinas and Al (R = -0.97) (p < 0.05). Both positive and negative high correlations were confirmed for phaeozem. The CART method subsequently proved that the characteristic elements for individual soil types are B, Ca, Mg, Ni, and Mn. The soil types of cambisol, fluvisol, gleysol, anthrosol, and kastanozem had the closest relationship with the elements mentioned, and it can therefore be assumed that their occurrence indicates the presence of these soil types within the range of beehive location.
- Keywords
- Czech beekeepers, GIS, sustainability, traces elements,
- Publication type
- Journal Article MeSH