Nejvíce citovaný článek - PubMed ID 34542078
Stereological Changes in Microvascular Parameters in Hippocampus of a Transgenic Rat Model of Alzheimer's Disease
Alzheimer's disease (AD), a leading cause of dementia worldwide, is a multifactorial neurodegenerative disorder characterized by amyloid-beta plaques, tauopathy, neuronal loss, neuro-inflammation, brain atrophy, and cognitive deficits. AD manifests as familial early-onset (FAD) with specific gene mutations or sporadic late-onset (LOAD) caused by various genetic and environmental factors. Numerous transgenic rodent models have been developed to understand AD pathology development and progression. The TgF344-AD rat model is a double transgenic model that carries two human gene mutations: APP with the Swedish mutation and PSEN-1 with delta exon 9 mutations. This model exhibits a complete repertoire of AD pathology in an age-dependent manner. This review summarizes multidisciplinary research insights gained from studying TgF344-AD rats in the context of AD pathology. We explore neuropathological findings; electrophysiological assessments revealing disrupted synaptic transmission, reduced spatial coding, network-level dysfunctions, and altered sleep architecture; behavioral studies highlighting impaired spatial memory; alterations in excitatory-inhibitory systems; and molecular and physiological changes in TgF344-AD rats emphasizing their age-related effects. Additionally, the impact of various interventions studied in the model is compiled, underscoring their role in bridging gaps in understanding AD pathogenesis. The TgF344-AD rat model offers significant potential in identifying biomarkers for early detection and therapeutic interventions, providing a robust platform for advancing translational AD research. Key words Alzheimer's disease, Transgenic AD models, TgF344-AD rats, Spatial coding.
- MeSH
- Alzheimerova nemoc * genetika patologie metabolismus patofyziologie MeSH
- amyloidový prekurzorový protein beta genetika MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- mozek * patologie metabolismus patofyziologie MeSH
- mutace MeSH
- potkani inbrední F344 MeSH
- potkani transgenní MeSH
- presenilin-1 genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidový prekurzorový protein beta MeSH
- presenilin-1 MeSH
Degenerative effects of nerve tissues are often accompanied by changes in vascularization. In this regard, knowledge about hereditary cerebellar degeneration is limited. In this study, we compared the vascularity of the individual cerebellar components of 3-month-old wild-type mice (n = 8) and Purkinje cell degeneration (pcd) mutant mice, which represent a model of hereditary cerebellar degeneration (n = 8). Systematic random samples of tissue sections were processed, and laminin was immunostained to visualize microvessels. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in cerebellar layers. Our results in pcd mice revealed a 45% (p < 0.01) reduction in the total volume of the cerebellum, a 28% (p < 0.05) reduction in the total number of vessels and a lower total length, approaching 50% (p < 0.001), compared to the control mice. In pcd mutants, cerebellar degeneration is accompanied by significant reduction in the microvascular network that is proportional to the cerebellar volume reduction therefore does not change density of in the cerebellar gray matter of pcd mice.
- Klíčová slova
- Ataxia, Capillary, Cerebellar degeneration, Microvessels, Pcd mouse, Stereology,
- MeSH
- mikrocévy MeSH
- mozeček * MeSH
- myši - mutanty neurologické MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Purkyňovy buňky * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH