Most cited article - PubMed ID 34770744
Antimicrobial and Anticancer Application of Silver(I) Dipeptide Complexes
A series of novel Ga(III)-pyridine carboxylates ([Ga(Pic)3]·H2O (GaPic; HPic = picolinic acid), H3O[Ga(Dpic)2]·H2O (GaDpic; H2Dpic = dipicolinic acid), [Ga(Chel)(H2O)(OH)]2·4H2O (GaChel; H2Chel = chelidamic acid) and [Ga(Cldpic)(H2O)(OH)]2 (GaCldpic; H2Cldpic = 4-chlorodipicolinic acid)) have been synthesized by simple one-step procedure. Vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis and X-ray diffraction confirmed complexes molecular structure, inter and intramolecular interactions and their influence to spectral and thermal properties. Moreover, complex species speciation was described in Ga(III)-HPic and Ga(III)-H2Dpic systems by potentiometry and 1H NMR spectroscopy and mononuclear complex species were determined; [Ga(Pic)2]+ (logβ021 = 16.23(6)), [Ga(Pic)3] (logβ031 = 20.86(2)), [Ga(Dpic)2]- (logβ021 = 15.42(9)) and [Ga(Dpic)2(OH)]2- (logβ-121 = 11.08(4)). To confirm the complexes stability in 1% DMSO (primary solvent for biological testing), timescale 1H NMR spectra were measured (immediately after dissolution up to 96 h). Antimicrobial activity evaluated by IC50 (0.05 mM) is significant for GaDpic and GaCldpic against difficult to treat and multi-resistant P. aeruginosa. On the other hand, the GaPic complex is most effective against Jurkat, MDA-MB-231 and A2058 cancer cell lines and significantly also decreases the HepG2 cancer cells viability at 75 and 100 μM concentrations in a relatively short time (up to 48 h). In addition, fluorescence measurements have been used to elucidate bovine serum albumin binding activity between ligands, Ga(III) complexes and bovine serum albumin.
- Keywords
- Anticancer, Antimicrobial, BSA binding, Ga(III) complexes, Potentiometry, Stability,
- MeSH
- Cell Line MeSH
- Coordination Complexes * pharmacology chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Structure MeSH
- Neoplasms * MeSH
- Pyridines pharmacology MeSH
- Serum Albumin, Bovine metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coordination Complexes * MeSH
- Ligands MeSH
- Pyridines MeSH
- Serum Albumin, Bovine MeSH
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.
- Keywords
- SARS-CoV-2, XPS, antiviral coating, copper, nanofibers, plasma, silver,
- MeSH
- Antiviral Agents chemistry MeSH
- Coated Materials, Biocompatible chemistry MeSH
- Chlorocebus aethiops MeSH
- COVID-19 prevention & control transmission MeSH
- Humans MeSH
- Copper chemistry MeSH
- Nanofibers chemistry MeSH
- Polyesters chemistry MeSH
- SARS-CoV-2 chemistry MeSH
- Titanium chemistry MeSH
- Vero Cells MeSH
- Gold chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antiviral Agents MeSH
- Coated Materials, Biocompatible MeSH
- Copper MeSH
- Polyesters MeSH
- polyethylene oxide-polycaprolactone copolymer MeSH Browser
- Titanium MeSH
- titanium dioxide MeSH Browser
- Gold MeSH