Most cited article - PubMed ID 34904670
Zebularine induces enzymatic DNA-protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei
Forward-directed genetic screens are extremely powerful in identifying novel genes involved in a specific biological process, including various chromatin regulatory pathways. However, the traditional ways of genetic mapping are time- and cost-demanding. Recently, the whole process was revolutionized by the development of mapping-by-sequencing (MBS) protocols. In MBS, the causal mutations and their positions within genes are identified directly by whole-genome sequencing and bioinformatics analysis of the bulk of mutant plants selected based on the mutant phenotype from a segregating population. MBS increases precision and economizes the mapping. Here, we describe a general protocol and provide practical tips on how to proceed with the mapping-by-sequencing on the example of Arabidopsis forward-directed genetic screen designed to identify mutants sensitive to a specific type of DNA damage. The described protocol is generally applicable to a wide range of genetic screens in various inbreeding species with a reference genome sequence.
- Keywords
- DNA damage repair, DNA-protein crosslinks, Forward genetics, Genetic mapping, High-throughput sequencing, Mapping-by-sequencing, SNP calling, Zebularine,
- MeSH
- Arabidopsis * genetics MeSH
- Phenotype MeSH
- Genome, Plant MeSH
- Chromosome Mapping * methods MeSH
- Mutation MeSH
- Whole Genome Sequencing methods MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing * methods MeSH
- Publication type
- Journal Article MeSH
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.
- MeSH
- Arabidopsis * genetics metabolism MeSH
- DNA metabolism MeSH
- DNA Repair genetics MeSH
- DNA Damage MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- Proteins metabolism MeSH
- Sumoylation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Cell Cycle Proteins MeSH
- Proteins MeSH
The integrity of plant genetic information is constantly challenged by various internal and external factors. Therefore, plants use a sophisticated molecular network to identify, signal and repair damaged DNA. Here, we report on the identification and analysis of four uncharacterized Arabidopsis BRCT5 DOMAIN CONTAINING PROTEINs (BCPs). Proteins with the BRCT5 domain are frequently involved in the maintenance of genome stability across eukaryotes. The screening for sensitivity to induced DNA damage identified BCP1 as the most interesting candidate. We show that BCP1 loss of function mutants are hypersensitive to various types of DNA damage and accumulate an increased number of dead cells in root apical meristems upon DNA damage. Analysis of publicly available sog1 transcriptomic and SOG1 genome-wide DNA binding data revealed that BCP1 is inducible by gamma radiation and is a direct target of this key DNA damage signaling transcription factor. Importantly, bcp1 plants showed a reduced frequency of somatic homologous recombination in response to both endogenous and induced DNA damage. Altogether, we identified a novel plant-specific DNA repair factor that acts downstream of SOG1 in homology-based repair.
- Keywords
- Arabidopsis, BRCT domain, BRCT5 domain, DNA damage repair, genome stability, homologous recombination,
- Publication type
- Journal Article MeSH