Nejvíce citovaný článek - PubMed ID 34946099
Factors Influencing the Fungal Diversity on Audio-Visual Materials
Despite the diligent efforts of libraries, archives, and similar institutions to preserve cultural monuments, biodeterioration continues to pose a significant threat to these objects. One of the main sources of microorganisms responsible for the biodeterioration process is the presence of airborne microorganisms. Therefore, this research aims to monitor and compare outcomes of both culture-dependent (utilising various cultivation strategies) and culture-independent approaches (RNA-based sequencing) to identifying metabolically active airborne microorganisms in archives in the Czech Republic. Through this study, several species that have the potential to pose risks to both cultural heritage objects and the health of institution employees were found. Additionally, the efficacy of different cultivation media was demonstrated to be varied across archive rooms, highlighting the necessity of employing multiple cultivation media for comprehensive analyses. Of noteworthy importance, the resuscitating-promoting factor (Rpf) proved to be a pivotal tool, increasing bacterial culturability by up to 30% when synergistically employed Reasoner's 2A agar (R2A) and R2A + Rpf media. Next, the study emphasises the importance of integrating both culture-dependent and culture-independent approaches. The overlap between genera identified by the culture-dependent approach and those identified also by the culture-independent approach varied from 33% to surpassing 94%, with the maximum alignment exceeding 94% in only one case. Our results highlight the importance of actively monitoring and assessing levels of microbial air contamination in archives to prevent further deterioration of cultural heritage objects and to promote improved conditions for employees in archives and similar institutions.
- Klíčová slova
- Culture-dependent approach, Illumina MiSeq, Increasing culturability, Microbial air analysis, RNA analysis,
- Publikační typ
- časopisecké články MeSH
Microbial contamination in cultural heritage storage facilities is undoubtedly still a huge problem and leads to the biodeterioration of historical objects and thus the loss of information for future generations. Most studies focus on fungi that colonize materials, which are the primary agents of biodeterioration. However, bacteria also play crucial roles in this process. Therefore, this study focuses on identifying bacteria that colonize audio-visual materials and those present in the air in the archives of the Czech Republic. For our purposes, the Illumina MiSeq amplicon sequencing method was used. Using this method, 18 bacterial genera with an abundance of higher than 1% were identified on audio-visual materials and in the air. We also evaluated some factors that were assumed to possibly influence the composition of bacterial communities on audio-visual materials, of which locality was shown to be significant. Locality also explained most of the variability in bacterial community structure. Furthermore, an association between genera colonizing materials and genera present in the air was demonstrated, and indicator genera were evaluated for each locality. IMPORTANCE The existing literature on microbial contamination of audio-visual materials has predominantly used culture-based methods to evaluate contamination and has overlooked the potential impact of environmental factors and material composition on microbial communities. Furthermore, previous studies have mainly focused on contamination by microscopic fungi, neglecting other potentially harmful microorganisms. To address these gaps in knowledge, our study is the first to provide a comprehensive analysis of bacterial communities present on historical audio-visual materials. Our statistical analyses demonstrate the critical importance of including air analysis in such studies, as airborne microorganisms can significantly contribute to the contamination of these materials. The insights gained from this study are not only valuable in developing effective preventive measures to mitigate contamination but also valuable in identifying targeted disinfection methods for specific types of microorganisms. Overall, our findings highlight the need for a more holistic approach to understanding microbial contamination in cultural heritage materials.
- Klíčová slova
- Illumina MiSeq, air contamination, audio-visual materials, bacterial contamination, cultural heritage,
- MeSH
- atmosféra MeSH
- Bacteria * genetika MeSH
- houby genetika MeSH
- mikrobiota * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
In this study we investigated the microbial contamination of 126 samples of photographic and cinematographic materials from 10 archival funds in the Czech Republic. Microorganisms were isolated from the light-sensitive layer by swabbing it with a polyurethane sponge. Microbial isolates were identified by MALDI-TOF MS (bacteria) or by phenotype testing and microscopy (fungi). Bacterial contamination was more abundant and more diverse than fungal contamination, and both were significantly associated with archives. The most frequently isolated fungal genera were Cladosporium, Eurotium, Penicillium, Aspergillus and Alternaria. The most frequently isolated bacteria were Gram-positive genera such as Staphylococcus, Micrococcus, Kocuria, Streptococcus and Bacillus. This bacterial and fungal diversity suggests that air is the main vehicle of contamination. We also analysed the impact of the type of material used for the carrier (paper, baryta paper, cellulose acetate and nitrate or glass) or the light-sensitive layer (albumen, gelatine, collodion and other) on the level and diversity of microbial contamination. Carriers such as polyester and cellulose nitrate may have a negative impact on bacterial contamination, while paper and baryta paper may have a partially positive impact on both fungal and bacterial contamination.