Most cited article - PubMed ID 34991495
Measuring fear evoked by the scariest animal: Czech versions of the Spider Questionnaire and Spider Phobia Beliefs Questionnaire
INTRODUCTION: Threats to our survival are often posed by the environment in which humans have evolved or live today. Animal and human ancestors developed complex physiological and behavioral response systems to cope with two types of threats: immediate physical harm from predators or conspecifics, triggering fear, and the risk of infections from parasites and pathogens leading to the evolution of the behavioral immune system (BIS) with disgust as the key emotion. Here we ask whether the BIS has adapted to protect us from pandemic risks or poisoning by modern toxic substances. METHODS: We have developed a survey comprised of 60 vignettes describing threats evoking fear and disgust belonging to one of the three main categories of threats: (1) ancestral, (2) modern, and (3) pandemic of airborne disease. Each vignette was evaluated on a 7-point Likert scale based on fear, disgust, and anger. Respondents also completed an assessment battery. RESULTS: The results show that the strongest fear is triggered by modern threats (electricity, car accidents), while the highest disgust is evoked by ancient threats (body waste products, worms). Disgust does not respond to modern threat stimuli such as toxic substances or radioactivity as these evoke mainly fear and anger. A discriminant factor analysis classified nine out of 10 pandemic disgust vignettes into the ancestral disgust category, convincingly assigning the pandemic disgust threats to the ancestral type. Gender, age, and type of education were significant moderators of emotional responses across all threat categories. DISCUSSION: Our study reveals that while fear is more context-dependent, particularly triggered by modern threats, disgust operates on an evolutionarily hardwired basis, making it less effective against contemporary risks. Furthermore, disgust experienced during a pandemic outbreak is more closely aligned with ancestral disgust-related threats tapping into evolutionary ancient survival circuits of the BIS. However, as disgust declines with age, the brain must adaptatively shift the emotional processing from disgust to fear to protect older adults from contamination risks. Finally, our study reveals that pandemic fear is better predicted by specific behaviors rather than general anxiety, suggesting a need for new assessments.
- Keywords
- COVID-19, behavioral immune system, evolutionary psychology, fear module, pandemic,
- Publication type
- Journal Article MeSH
Spiders are among the animals evoking the highest fear and disgust and such a complex response might have been formed throughout human evolution. Ironically, most spiders do not present a serious threat, so the evolutionary explanation remains questionable. We suggest that other chelicerates, such as scorpions, have been potentially important in the formation and fixation of the spider-like category. In this eye-tracking study, we focused on the attentional, behavioral, and emotional response to images of spiders, scorpions, snakes, and crabs used as task-irrelevant distractors. Results show that spider-fearful subjects were selectively distracted by images of spiders and crabs. Interestingly, these stimuli were not rated as eliciting high fear contrary to the other animals. We hypothesize that spider-fearful participants might have mistaken crabs for spiders based on their shared physical characteristics. In contrast, subjects with no fear of spiders were the most distracted by snakes and scorpions which supports the view that scorpions as well as snakes are prioritized evolutionary relevant stimuli. We also found that the reaction time increased systematically with increasing subjective fear of spiders only when using spiders (and crabs to some extent) but not snakes and scorpions as distractors. The maximal pupil response covered not only the attentional and cognitive response but was also tightly correlated with the fear ratings of the picture stimuli. However, participants' fear of spiders did not affect individual reactions to scorpions measured by the maximal pupil response. We conclude that scorpions are evolutionary fear-relevant stimuli, however, the generalization between scorpions and spiders was not supported in spider-fearful participants. This result might be important for a better understanding of the evolution of spider phobia.
Theories explain the presence of fears and specific phobias elicited by animals in contemporary WEIRD (Western, educated, industrialized, rich, and democratic) populations by their evolutionary past in Africa. Nevertheless, empirical data about fears of animals in the Cradle of Humankind are still fragmentary. To fill this gap, we examined which local animals are perceived as the most frightening by Somali people, who inhabit a markedly similar environment and the region where humans have evolved. We asked 236 raters to rank 42 stimuli according to their elicited fear. The stimuli were standardized pictures of species representing the local fauna. The results showed that the most frightening animals were snakes, scorpions, the centipede, and large carnivores (cheetahs and hyenas). These were followed up by lizards and spiders. Unlike in Europe, spiders represent less salient stimuli than scorpions for Somali respondents in this study. This conforms to the hypothesis suggesting that fear of spiders was extended or redirected from other chelicerates.
- Keywords
- African savanna, Arachnophobia, Evolutionary psychology, Fear, Non-WEIRD, Ophidiophobia,
- MeSH
- Phobic Disorders * MeSH
- Snakes MeSH
- Humans MeSH
- Spiders * MeSH
- Scorpions MeSH
- Fear MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: The administration of questionnaires presents an easy way of obtaining important knowledge about phobic patients. However, it is not well known how these subjective measurements correspond to the patient's objective condition. Our study aimed to compare scores on questionnaires and image evaluation to the objective measurements of the behavioral approach test (BAT) and the neurophysiological effect of spiders extracted from fMRI measurements. The objective was to explore how reliably subjective statements about spiders and physiological and behavioral parameters discriminate between phobics and non-phobics, and what are the best predictors of overall brain activation. METHODS: Based on a clinical interview, 165 subjects were assigned to either a "phobic" or low-fear "control" group. Finally, 30 arachnophobic and 32 healthy control subjects (with low fear of spiders) participated in this study. They completed several questionnaires (SPQ, SNAQ, DS-R) and underwent a behavioral approach test (BAT) with a live tarantula. Then, they were measured in fMRI while watching blocks of pictures including spiders and snakes. Finally, the respondents rated all the visual stimuli according to perceived fear. We proposed the Spider Fear Index (SFI) as a value characterizing the level of spider fear, computed based on the fMRI measurements. We then treated this variable as the "neurophysiological effect of spiders" and examined its contribution to the respondents' fear ratings of the stimuli seen during the fMRI using the redundancy analysis (RDA). RESULTS: The results for fear ranks revealed that the SFI, SNAQ, DS-R, and SPQ scores had a significant effect, while BAT and SPQ scores loaded in the same direction of the first multivariate axis. The SFI was strongly correlated with both SPQ and BAT scores in the pooled sample of arachnophobic and healthy control subjects. DISCUSSION: Both SPQ and BAT scores have a high informative value about the subject's fear of spiders and together with subjective emotional evaluation of picture stimuli can be reliable predictors of spider phobia. These parameters provide easy and non-expensive but reliable measurement wherever more expensive devices such as magnetic resonance are not available. However, SFI still reflects individual variability within the phobic group, identifying individuals with higher brain activation, which may relate to more severe phobic reactions or other sources of fMRI signal variability.
- Keywords
- arachnophobia, behavioral approach test, fMRI, fear, snakes, spiders,
- Publication type
- Journal Article MeSH
INTRODUCTION: Animal and human ancestors developed complex physiological and behavioral response systems to cope with two types of threats: immediate physical harm from predators or conspecifics, triggering fear, and the risk of infections from parasites and pathogens leading to the evolution of the behavioral immune system with disgust as the key emotion. Integration of the evolutionary concepts of the fear module and behavioral immune systems has been infrequent, despite the significant survival advantages of disgust in various contexts. Studies comparing attention to ancestral and modern threats accompanied by fear have yielded ambiguous results and what qualifies as salient modern disgusting stimuli remains unclear. We do not know whether disgust or the behavioral immune system, as inherent aspects of human psychology, have adapted to safeguard us from pandemic risks or poisoning by modern toxic substances. METHODS: To test these effects, we have developed a survey comprised of 60 short vignettes describing threats evoking fear and disgust belonging to one of the three main categories of threats: (1) ancestral (phylogenetic), (2) modern (ontogenetic), and (3) pandemics of airborne disease. Each vignette was evaluated on a 7-point Likert scale based on fear, disgust, and anger. In total, 660 respondents completed the survey. The data were analysed using a factor analysis and general linear model with the respondent as a random factor. RESULTS: The results show that the strongest fear is triggered by modern threats (electricity, car accidents), while the highest disgust is evoked by ancient threats (body waste products, worms, etc.). Interestingly, disgust does not respond to modern threat stimuli such as toxic substances or radioactivity as these evoke mainly fear and anger. Finally, a distinct response pattern was found for pandemic threats, in which both fear (e.g., of disease and death) and disgust (e.g., of used face masks) are employed. DISCUSSION: Our study offers valuable insights into the emotional responses to ancestral and modern threats and their adaptation to pandemic challenges. Ancestral threats are not always more powerful stimuli than adequate threats of the modern type, but they function specifically. Thus, snakes and heights as fear-inducing ancestral threats form separate factors in a multivariate analysis, whereas all ancestral disgust stimuli group together. The threat of a pandemic forms a specific category and people process it emotionally and cognitively. These insights contribute to our understanding of human psychology and behavior in an ever-changing world.
- Keywords
- COVID-19, anger, fear of heights, fear of snakes, ontogenetic threat, oral disgust, pandemic of airborne disease, phylogenetic threat,
- Publication type
- Journal Article MeSH