Most cited article - PubMed ID 35009959
Effect of Substrate and Thickness on the Photoconductivity of Nanoparticle Titanium Dioxide Thin Film Vacuum Ultraviolet Photoconductive Detector
This study presents the fabrication of highly photosensitive undoped zinc oxide (ZnO) thin films for vacuum ultraviolet (VUV) radiation detection, covering the wavelength range of 100-200 nm. ZnO films were deposited using hybrid pulsed reactive magnetron sputtering, assisted by ECWR (electron cyclotron wave resonance) plasma. Control of the ECWR power (PECWR), ranging from 0 to 380 W, played a crucial role in enhancing the films' photoconductive properties. At PECWR = 200 W, the photosensitivity increased by 8 orders of magnitude compared to films deposited without ECWR assistance. This improvement was attributed to a sharp reduction in dark current due to lower defect density. Photoluminescence and cathodoluminescence spectra revealed a significant reduction in defect-related emissions for films deposited at PECWR = 200 W, confirming fewer intrinsic defects. Raman spectroscopy also showed a decrease in defect-related vibrational modes in the same films. Time-Resolved Microwave Conductivity (TRMC) measurements further supported these findings, demonstrating rapid recombination of charge carriers at 200 W, indicative of low trap densities. These results suggest that precise control of ECWR power allows for optimization of the defect concentration and crystallinity in ZnO films, paving the way for the development of high-sensitivity VUV photodetectors.
- Keywords
- Electron cyclotron wave resonance, Medium-frequency range magnetron sputtering, Photoconductive detector, Thin film, Vacuum ultraviolet, Zinc oxide,
- Publication type
- Journal Article MeSH
We report on fabricated titanium dioxide (TiO2) thin films along with a transimpedance amplifier (TIA) test setup as a photoconductivity detector (sensor) in the ultraviolet-C (UV-C) wavelength region, particularly at 260 nm. TiO2 thin films deposited on high-resistivity undoped silicon-substrate at thicknesses of 100, 500, and 1000 nm exhibited photoresponsivities of 81.6, 55.6, and 19.6 mA/W, respectively, at 30 V bias voltage. Despite improvements in the crystallinity of the thicker films, the decrease in photocurrent, photoconductivity, photoconductance, and photoresponsivity in thicker films is attributed to an increased number of defects. Varying the thickness of the film can, however, be leveraged to control the wavelength response of the detector. Future development of a chip-based portable UV-C detector using TiO2 thin films will open new opportunities for a wide range of applications.
- Keywords
- UV-C, photoconductive detector, sensor, thin film, titanium dioxide, transimpedance amplifier, ultraviolet,
- Publication type
- Journal Article MeSH