Most cited article - PubMed ID 35099248
Effect of methylprednisolone on experimental brain edema in rats - own experience reviewed
Animal models are an important tool for studying ischemic mechanisms of stroke. Among them, the middle cerebral artery occlusion (MCAO) model via the intraluminal suture method in rodents is closest to human ischemic stroke. It is a model of transient occlusion followed by reperfusion, thus representing cerebral ischemia-reperfusion model that simulates patients with vascular occlusion and timely recanalization. Although reperfusion is very beneficial for the possibility of preserving brain functions after ischemia, it also brings a great risk in the form of brain edema, which can cause the development of intracranial hypertension, and increasing morbidity and mortality. In this paper, we present the results of our own transient reperfusion model of MCAO in which we tested the permeability of the blood-brain barrier (BBB) using Evans blue (EB), an intravital dye with a high molecular weight (68,500 Da) that prevents its penetration through the intact BBB. A total of 15 animals were used in the experiment and underwent the following procedures: insertion of the MCA occluder; assessment of ischemia by 2,3,5 -Triphenyltetrazolium chloride (TTC) staining; assessment of the BBB permeability using brain EB distribution. The results are presented and discussed. The test of BBB permeability using EB showed that 120 minutes after induction of ischemia, the BBB is open for the entry of large molecules into the brain. We intend to use this finding to time the application of neuroprotective agents via ICA injection in our next stroke model. Keywords: Cerebral ischemia-reperfusion model, Middle cerebral artery occlusion, Blood-brain barrier, 2,3,5 -Triphenyltetrazolium chloride, Evans blue.
- MeSH
- Blood-Brain Barrier * metabolism pathology MeSH
- Infarction, Middle Cerebral Artery * metabolism pathology MeSH
- Brain Ischemia * metabolism pathology MeSH
- Capillary Permeability * physiology MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Permeability MeSH
- Pilot Projects MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Wistar MeSH
- Reperfusion Injury * metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Brain edema is a fatal pathological state in which brain volume increases as a result of abnormal accumulation of fluid within the brain parenchyma. A key attribute of experimentally induced brain edema - increased brain water content (BWC) - needs to be verified. Various methods are used for this purpose: specific gravimetric technique, electron microscopic examination, magnetic resonance imaging (MRI) and dry/wet weight measurement. In this study, the cohort of 40 rats was divided into one control group (CG) and four experimental groups with 8 rats in each group. The procedure for determining BWC using dry/wet weight measurement was initiated 24 h after the completion of edema induction by the water intoxication method (WI group); after the intraperitoneal administration of Methylprednisolone (MP) together with distilled water during edema induction (WI+MP group); 30 min after osmotic blood brain barrier disruption (BBBd group); after injection of MP via the internal carotid artery immediately after BBBd (BBBd + MP group). While induction of brain edema (WI, BBBd) resulted in significantly higher BWC, there was no increase in BWC in the MP groups (WI+MP, BBBd+MP), suggesting a neuroprotective effect of MP in the development of brain edema.
- MeSH
- Brain Edema * chemically induced diagnostic imaging pathology MeSH
- Edema pathology MeSH
- Blood-Brain Barrier MeSH
- Rats MeSH
- Methylprednisolone pharmacology MeSH
- Brain MeSH
- Water MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Methylprednisolone MeSH
- Water MeSH