Nejvíce citovaný článek - PubMed ID 35099255
Mitochondrial respiration of human platelets in young adult and advanced age - Seahorse or O2k?
Mitochondrial dysfunction is an important cellular hallmark of aging and neurodegeneration. Platelets are a useful model to study the systemic manifestations of mitochondrial dysfunction. To evaluate the age dependence of mitochondrial parameters, citrate synthase activity, respiratory chain complex activity, and oxygen consumption kinetics were assessed. The effect of cognitive impairment was examined by comparing the age dependence of mitochondrial parameters in healthy individuals and those with neuropsychiatric disease. The study found a significant negative slope of age-dependence for both the activity of individual mitochondrial enzymes (citrate synthase and complex II) and parameters of mitochondrial respiration in intact platelets (routine respiration, maximum capacity of electron transport system, and respiratory rate after complex I inhibition). However, there was no significant difference in the age-related changes of mitochondrial parameters between individuals with and without cognitive impairment. These findings highlight the potential of measuring mitochondrial respiration in intact platelets as a means to assess age-related mitochondrial dysfunction. The results indicate that drugs and interventions targeting mitochondrial respiration may have the potential to slow down or eliminate certain aging and neurodegenerative processes. Mitochondrial respiration in platelets holds promise as a biomarker of aging, irrespective of the degree of cognitive impairment.
- Klíčová slova
- aging, cognitive decline, mitochondria, mitochondrial respiration, neurodegenerative disease, neuroinflammation, neuroplasticity, oxidative stress, platelet, respiratory chain complex,
- Publikační typ
- časopisecké články MeSH
Mitochondria are considered central regulator of the aging process; however, majority of studies dealing with the impact of age on mitochondrial oxygen consumption focused on skeletal muscle concluding (although not uniformly) a general declining trend with advancing age. In addition, gender related differences in mitochondrial respiration have not been satisfactorily described yet. The aim of the present study was to evaluate mitochondrial oxygen consumption in various organs of aging male and female Fischer 344 rats at the ages of 6, 12 and 24 months. Mitochondrial respiration of homogenized (skeletal muscle, left and right heart ventricle, hippocampus, cerebellum, kidney cortex), gently mechanically permeabilized (liver) tissue or intact cells (platelets) was determined using high-resolution respirometry (oxygraphs O2k, Oroboros, Austria). The pattern of age-related changes differed in each tissue: in the skeletal muscle and kidney cortex of both sexes and in female heart, parameters of mitochondrial respiration significantly declined with age. Resting respiration of intact platelets displayed an increasing trend and it did not correlate with skeletal muscle respiratory states. In the heart of male rats and brain tissues of both sexes, respiratory states remained relatively stable over analyzed age categories with few exceptions of lower mitochondrial oxygen consumption at the age of 24 months. In the liver, OXPHOS capacity was higher in females than in males with either no difference between the ages of 6 and 24 months or even significant increase at the age of 24 months in the male rats. In conclusion, the results of our study indicate that the concept of general pattern of age-dependent decline in mitochondrial oxygen consumption across different organs and tissues could be misleading. Also, the statement of higher mitochondrial respiration in females seems to be conflicting, since the gender-related differences may vary with the tissue studied, combination of substrates used and might be better detectable at younger ages than in old animals.
- MeSH
- anestezie MeSH
- buněčné dýchání MeSH
- dýchání MeSH
- kosterní svaly metabolismus MeSH
- krysa rodu Rattus MeSH
- mitochondrie * MeSH
- spotřeba kyslíku fyziologie MeSH
- stárnutí MeSH
- svalové mitochondrie * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Metabolic flux investigations of cells and tissue samples are a rapidly advancing tool in diverse research areas. Reliable methods of data normalization are crucial for an adequate interpretation of results and to avoid a misinterpretation of experiments and incorrect conclusions. The most common methods for metabolic flux data normalization are to cell number, DNA and protein. Data normalization may be affected by a variety of factors, such as density, healthy state, adherence efficiency, or proportional seeding of cells. The mussel-derived adhesive Cell-Tak is often used to immobilize poorly adherent cells. Here we demonstrate that this coating strongly affects the fluorescent detection of DNA leading to an incorrect and highly variable normalization of metabolic flux data. Protein assays are much less affected and cell counting can virtually completely remove the effect of the coating. Cell-Tak coating also affects cell shape in a cell line-specific manner and may change cellular metabolism. Based on these observations we recommend cell counting as a gold standard normalization method for Seahorse metabolic flux measurements with protein content as a reasonable alternative.
- MeSH
- DNA * MeSH
- membránové proteiny * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Cell-Tak MeSH Prohlížeč
- DNA * MeSH
- membránové proteiny * MeSH