Nejvíce citovaný článek - PubMed ID 35104407
The Two Faces of the Liquid Ordered Phase
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.e., binding and/or cargo transfer). The analysis of interactions with HDL particles and various lipid phases revealed that both fully fluid and some gel-phase lipids preferentially interact with HDL particles, although differences were observed in protein binding and cargo exchange. Both interactions were reduced with ordered lipid mixtures containing cholesterol. To investigate the mechanism, membranes were prepared from single-lipid components, enabling step-by-step modification of the lipid building blocks. On a biophysical level, the different mixtures displayed varying stiffness, fluidity, and hydrogen bond network changes. Increased glycerol mobility and a strengthened hydrogen bond network enhanced anchoring interactions, while fluid membranes with a reduced water network facilitated cargo transfer. In summary, the data indicate that different lipid classes are involved depending on the type of interaction, whether anchoring or cargo transfer.
- Klíčová slova
- Laurdan polarity, glycerol region mobility, hydrogen bond network, lipoprotein, membrane order,
- Publikační typ
- časopisecké články MeSH
Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C-H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.
- MeSH
- cholesterol chemie MeSH
- fosfatidylcholiny * chemie MeSH
- lipidové dvojvrstvy * chemie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- cholesterol MeSH
- fosfatidylcholiny * MeSH
- lipidové dvojvrstvy * MeSH
Shear viscosity of lipid membranes dictates how fast lipids, proteins, and other membrane constituents travel along the membrane and rotate around their principal axis, thus governing the rates of diffusion-limited reactions taking place at membranes. In this framework, the heterogeneity of biomembranes indicates that cells could regulate these rates via varying local viscosities. Unfortunately, experiments to probe membrane viscosity under various conditions are tedious and error prone. Molecular dynamics simulations provide an attractive alternative, especially given that recent theoretical developments enable the elimination of finite-size effects in simulations. Here, we use a variety of different equilibrium methods to extract the shear viscosities of lipid membranes from both coarse-grained and all-atom molecular dynamics simulations. We systematically probe the variables relevant for cellular membranes, namely, membrane protein crowding, cholesterol concentration, and the length and saturation level of lipid acyl chains, as well as temperature. Our results highlight that in their physiologically relevant ranges, protein concentration, cholesterol concentration, and temperature have significantly larger effects on membrane viscosity than lipid acyl chain length and unsaturation level. In particular, the crowding with proteins has a significant effect on the shear viscosity of lipid membranes and thus on the diffusion occurring in the membranes. Our work also provides the largest collection of membrane viscosity values from simulation to date, which can be used by the community to predict the diffusion coefficients or their trends via the Saffman-Delbrück description. Additionally, it is worth emphasizing that diffusion coefficients extracted from simulations exploiting periodic boundary conditions must be corrected for the finite-size effects prior to comparison with experiment, for which the present collection of viscosity values can readily be used. Finally, our thorough comparison to experiments suggests that there is room for improvement in the description of bilayer dynamics provided by the present force fields.
- MeSH
- buněčná membrána metabolismus MeSH
- difuze MeSH
- lipidové dvojvrstvy metabolismus MeSH
- lipidy * MeSH
- simulace molekulární dynamiky * MeSH
- teplota MeSH
- viskozita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
- lipidy * MeSH