Nejvíce citovaný článek - PubMed ID 35111056
Aminophylline Induces Two Types of Arrhythmic Events in Human Pluripotent Stem Cell-Derived Cardiomyocytes
The combination of aminophylline and salbutamol is frequently used in clinical practice in the treatment of obstructive lung diseases. While the side effects (including arrhythmias) of the individual bronchodilator drugs were well described previously, the side effects of combined treatment are almost unknown. We aimed to study the arrhythmogenic potential of combined aminophylline and salbutamol treatment in vitro. For this purpose, we used the established atomic force microscopy (AFM) model coupled with cardiac organoids derived from human pluripotent stem cells (hPSC-CMs). We focused on the chronotropic, inotropic, and arrhythmogenic effects of salbutamol alone and aminophylline and salbutamol combined treatment. We used a method based on heart rate/beat rate variability (HRV/BRV) analysis to detect arrhythmic events in the hPSC-CM based AFM recordings. Salbutamol and aminophylline had a synergistic chronotropic and inotropic effect compared to the effects of monotherapy. Our main finding was that salbutamol reduced the arrhythmogenic effect of aminophylline, most likely mediated by endothelial nitric oxide synthase activated by beta-2 adrenergic receptors. These findings were replicated and confirmed using hPSC-CM derived from two cell lines (CCTL4 and CCTL12). Data suggest that salbutamol as an add-on therapy may not only deliver a bronchodilator effect but also increase the cardiovascular safety of aminophylline, as salbutamol reduces its arrhythmogenic potential.
- Klíčová slova
- Aminophylline, Arrhythmogenic effects, Atomic force microscopy, iPSC, Biomechanical properties, Cardiomyocytes, Drug cardiotoxicity, HESC, Pulmonary drug screening, Salbutamol,
- MeSH
- albuterol * farmakologie MeSH
- aminofylin * farmakologie MeSH
- bronchodilatancia farmakologie MeSH
- buněčné linie MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- pluripotentní kmenové buňky účinky léků cytologie MeSH
- srdeční arytmie * farmakoterapie MeSH
- srdeční frekvence účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- albuterol * MeSH
- aminofylin * MeSH
- bronchodilatancia MeSH
Cardiac side effects of some pulmonary drugs are observed in clinical practice. Aminophylline, a methylxanthine bronchodilator with documented proarrhythmic action, may serve as an example. Data on the action of aminophylline on cardiac cell electrophysiology and contractility are not available. Hence, this study was focused on the analysis of changes in the beat rate and contraction force of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and HL-1 cardiomyocytes in the presence of increasing concentrations of aminophylline (10 µM-10 mM in hPSC-CM and 8-512 µM in HL-1 cardiomyocytes). Basic biomedical parameters, namely, the beat rate (BR) and contraction force, were assessed in hPSC-CMs using an atomic force microscope (AFM). The beat rate changes under aminophylline were also examined on the HL-1 cardiac muscle cell line via a multielectrode array (MEA). Additionally, calcium imaging was used to evaluate the effect of aminophylline on intracellular Ca2+ dynamics in HL-1 cardiomyocytes. The BR was significantly increased after the application of aminophylline both in hPSC-CMs (with 10 mM aminophylline) and in HL-1 cardiomyocytes (with 256 and 512 µM aminophylline) in comparison with controls. A significant increase in the contraction force was also observed in hPSC-CMs with 10 µM aminophylline (a similar trend was visible at higher concentrations as well). We demonstrated that all aminophylline concentrations significantly increased the frequency of rhythm irregularities (extreme interbeat intervals) both in hPSC-CMs and HL-1 cells. The occurrence of the calcium sparks in HL-1 cardiomyocytes was significantly increased with the presence of 512 µM aminophylline. We conclude that the observed aberrant cardiomyocyte response to aminophylline suggests an arrhythmogenic potential of the drug. The acquired data represent a missing link between the arrhythmic events related to the aminophylline/theophylline treatment in clinical practice and describe cellular mechanisms of methylxanthine arrhythmogenesis. An AFM combined with hPSC-CMs may serve as a robust platform for direct drug effect screening.
- Klíčová slova
- IPSC, aminophylline, arrhythmogenic effects, atomic force microscopy, cardiomyocytes, drug cardiotoxicity, hESC, methylxanthines,
- Publikační typ
- časopisecké články MeSH