Most cited article - PubMed ID 35160829
Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance
This paper investigates the development of fabric materials using several blends of inherently fire-resistant (FR) fibers and various knitted structures. The samples are evaluated with respect to their performance and comfort-related properties. Inherently fire-resistant fibers, e.g., Nomex, Protex, carbon and FR viscose, were used to develop different structures of knitted fabrics. Cross-miss, cross-relief, and vertical tubular structures were knitted by using optimum fiber blend proportions and combinations of stitches. Several important aspects of the fabric samples were investigated, e.g., their physical, mechanical and serviceability performance. Thermo-physiological and tactile/touch-related comfort properties were evaluated in addition to flame resistance performance. An analysis of mechanical performance indicated that the knitted structure has a significant influence on the tensile strength, bursting strength and pilling resistance. The cross-relief structure proved to be the strongest followed by the cross-miss and vertical tubular structures. The FR station suits made from 70:30 Protex/Nomex exhibited the best combination of tensile and bursting strength; therefore, this material is recommended for making a stable and durable station suit. Interestingly, it was also concluded from the experimental study that knitted samples with a cross-relief structure exhibit the best fire-resistance performance. Fiber blends of 70:30 Protex/Nomex and 70:30 Nomex/carbon were found to be optimum in terms of overall performance. The best flame resistance was achieved with Nomex:carbon fiber blends. These results were confirmed with vertical flammability tests, TGA, DTGA and cone calorimetry analysis. The optimization of blend composition as well as knitting structure/architecture is a crucial finding toward designing the best FR station suit in terms of mechanical, dimensional, thermal, thermo-physiological and flame resistance performance.
- Keywords
- comfort properties, fire-resistant (FR) material, inherently fire-retardant fiber, knitted structure, mechanical performance, station suits,
- Publication type
- Journal Article MeSH
This paper presents an experimental study on the influence of alkaline environments on natural fibers of plant and mineral origin in concretes. The durability of concrete-based composite materials is influenced by the properties of the reinforcing fiber, and the serviceability of concrete is dependent on its durability. The aim of the present study is to investigate the strength, weight loss %, and surface degradation of jute, sugarcane, coconut, sisal, as well as basalt fibers through an accelerated aging method when used as reinforcements in concrete. The samples were immersed in an alkaline environment of sodium and calcium hydroxide at two different levels of pH for one week. Further, the fibers were immersed in NaOH and Ca(OH)2 solutions of 1 M, 2 M, 4 M, and 6 M concentrations for 48 h in order to investigate the gradual effect of an alkaline environment on the mechanical properties of the fiber. It was concluded that the weight loss % was greatest for jute fibers when used in concrete composite, while there was no significant effect on the basalt fiber samples. The strength of jute fiber in the concrete sample was also most severely affected by the aging process, compared to other fibers. The strength of basalt fibers in a concrete composite was least affected by the aging process. In some cases, the sisal fiber sample showed an increase in fiber tenacity after the aging process due to fibrillation, which might have increased the interfacial area. The fiber microstructure before and after the aging was evaluated through the use of scanning electron microscopy (SEM). SEM analyses of different fibers were carried out to investigate surface degradation. The fiber pull-out strength was found to be the greatest for basalt fiber, followed by jute and sisal. This is indicative of the excellent adhesion of such fibers with cement in a concrete composite. In these cases, the use of sisal fiber results in defibrillation and increased specific surface area. Sugarcane and coconut fibers ruptured due to their inherent weakness and provided only a small increment in the mechanical performance of the concrete. Basalt fiber-reinforced concrete offered the greatest compressive strength, followed by jute and sisal. These observations provide crucial information regarding the durability and aging of natural fiber-reinforced concrete.
- Keywords
- accelerated aging, basalt, compressive strength, fiber pull-out, fiber-reinforced concrete, lignocellulose, natural cellulosic fibers, surface degradation,
- Publication type
- Journal Article MeSH