Most cited article - PubMed ID 35246751
Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood
Several different techniques and methods are used to capture and study beetles (Coleoptera). One option is the use of window traps with various trapping liquids. However, these liquids used in comparative studies may have a biasing effect on the results. The effectiveness of the frequently used liquid baits, involving beer, wine, vinegar, and water as the reference liquid, was compared in this study. Twenty-four traps were assigned to two habitat categories (sunny and shady) and four kinds of bait: beer, wine, vinegar, and water. During the study from June to July 2021, a total of 29,944 invertebrates were captured; of these, 3,931 individuals belonged to Coleoptera. A total of 3,825 beetles were identified, belonging to 120 species and 36 families. The most abundant family was Nitidulidae, with 3,297 adults (86% of the total). The number of arthropods differed only in the trapping liquid, and the captures were similar between beer and wine and between vinegar and water. The trapping liquid had a more significant effect on beetle abundance and species richness. In contrast, exposure had a significant effect only on the number of beetle species and a higher ratio of beetles was found in the shade. Beer and wine were very attractive and collected similar beetle communities. However, the diversity (Shannon's index) was low due to the high abundance of several species. Traps with vinegar and water collected a similar composition and species richness. After removing sap beetles (Nitidulidae) from all traps, a significant difference was still recorded between trapping liquids in the number of individuals and species, and their communities were much more similar. Thus, at high abundances of sap beetles, it is possible to exclude them from analyses and obtain more accurate data when assessing environmental variables. The results showed that the type of trapping liquids used can have substantial effects on abundance and species composition captured beetles in traps especially for beer and wine. The beer and wine in traps can significantly influence the subsequent biodiversity assessment. We recommend the use of trapping liquids without the baiting effect to correctly assess the effect of environmental variables on beetle richness and abundance.
- Keywords
- Arthropoda, Bait trap, Coleoptera, Nitidulidae, Saproxylic taxa, Species richness,
- MeSH
- Biodiversity MeSH
- Coleoptera * MeSH
- Ecosystem MeSH
- Acetic Acid MeSH
- Humans MeSH
- Water MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetic Acid MeSH
- Water MeSH
Wood decomposition is a central process contributing to global carbon and nutrient cycling. Quantifying the role of the major biotic agents of wood decomposition, i.e. insects and fungi, is thus important for a better understanding of this process. Methods to quantify wood decomposition, such as dry mass loss, suffer from several shortcomings, such as destructive sampling or subsampling. We developed and tested a new approach based on computed tomography (CT) scanning and semi-automatic image analysis of logs from a field experiment with manipulated beetle communities. We quantified the volume of beetle tunnels in wood and bark and the relative wood volume showing signs of fungal decay and compared both measures to classic approaches. The volume of beetle tunnels was correlated with dry mass loss and clearly reflected the differences between beetle functional groups. Fungal decay was identified with high accuracy and strongly correlated with ergosterol content. Our data show that this is a powerful approach to quantify wood decomposition by insects and fungi. In contrast to other methods, it is non-destructive, covers entire deadwood objects and provides spatially explicit information opening a wide range of research options. For the development of general models, we urge researchers to publish training data.
- MeSH
- Coleoptera * MeSH
- Wood * microbiology MeSH
- Ergosterol MeSH
- Fungi MeSH
- Tomography, X-Ray Computed MeSH
- Machine Learning MeSH
- Carbon MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ergosterol MeSH
- Carbon MeSH