Nejvíce citovaný článek - PubMed ID 35254911
The evolution of brain neuron numbers in amniotes
The spatial orientation of mammals and birds has been intensively studied for many years, but the cognitive mechanism of spatial orientation and memory used by squamates remains poorly understood. Our study evaluated the learning and memory abilities of leopard geckos (Eublepharis macularius) in an adapted Morris water maze. The animals learned during the training phase consisted of 20 trials. To assess long-term memory, we retested geckos twice after several months. The geckos remembered the learned information in a short re-test after two months, but after four months, they required retraining to find the platform. We hypothesise that the duration of memory corresponds with short-term changes in semi-desert environments within one season, while disruption of memory performance after a six-month gap may simulate the more extensive seasonal change in spatial relationships in their natural environment. Moreover, during the winter period, geckos exhibit low activity, which can be connected with decreased frequency of foraging trips. Therefore, the memory loss after four months may reflect the low level of memory jogging. The motivation during the experiment was the crucial parameter of learning and memory processes. In later phases, geckos were less motivated to perform the task. Finally, they relearned the spatial orientation task, but they moved more slowly as the experiment progressed.
- Klíčová slova
- Morris water maze, Squamata, cognition, memory, orientation, reptile learning, spatial navigation,
- Publikační typ
- časopisecké články MeSH
UNLABELLED:
Introduction: Songbirds, especially corvids, and parrots are remarkably intelligent. Their cognitive skills are on par with primates and their brains contain primate-like numbers of neurons concentrated in high densities in the telencephalon. Much less is known about cognition and neuron counts in more basal bird lineages. Here, we focus on brain cellular composition of galliform birds, which have small brains relative to body size and a proportionally small telencephalon and are often perceived as cognitively inferior to most other birds. METHODS: We use the isotropic fractionator to assess quantitatively the numbers and distributions of neurons and nonneuronal cells in 15 species of galliform birds and compare their cellular scaling rules with those of songbirds, parrots, marsupials, insectivores, rodents, and primates. RESULTS: On average, the brains of galliforms contain about half the number of neurons found in parrot and songbird brains of the same mass. Moreover, in contrast to these birds, galliforms resemble mammals in having small telencephalic and dominant cerebellar neuronal fractions. Consequently, galliforms have much smaller absolute numbers of neurons in their forebrains than equivalently sized songbirds and parrots, which may limit their cognitive abilities. However, galliforms have similar neuronal densities and neuron counts in the brain and forebrain as equally sized non-primate mammals. Therefore, it is not surprising that cognitive abilities of galliforms are on par with non-primate mammals in many domains. CONCLUSION: Comparisons performed in this study demonstrate that birds representing distantly related clades markedly differ in neuronal densities, neuron numbers, and the allocation of brain neurons to major brain divisions. In analogy with the concept of volumetric composition of the brain, known as the cerebrotype, we conclude that distantly related birds have distinct neuronal cerebrotypes.
.- Klíčová slova
- Brain size, Cognition, Evolution, Intelligence, Number of neurons,
- MeSH
- biologická evoluce MeSH
- druhová specificita MeSH
- Galliformes * anatomie a histologie fyziologie MeSH
- mozek * cytologie anatomie a histologie MeSH
- neurony * cytologie fyziologie MeSH
- papouškovití * anatomie a histologie fyziologie MeSH
- počet buněk MeSH
- telencefalon cytologie MeSH
- zpěvní ptáci * anatomie a histologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
BACKGROUND: Smell abilities differ greatly among vertebrate species due to distinct sensory needs, with exceptional variability reported in the number of olfactory genes and the size of the odour-processing regions of the brain. However, key environmental factors shaping genomic and phenotypic changes linked to the olfactory system remain difficult to identify at macroevolutionary scales. Here, we investigate the association between diverse ecological traits and the number of olfactory chemoreceptors in approximately two hundred ray-finned fishes. RESULTS: We found independent expansions producing large gene repertoires in several lineages of nocturnal amphibious fishes, generally able to perform active terrestrial exploration. We reinforced this finding with on-purpose genomic and transcriptomic analysis of Channallabes apus, a catfish species from a clade with chemosensory-based aerial orientation. Furthermore, we also detected an augmented information-processing capacity in the olfactory bulb of nocturnal amphibious fishes by estimating the number of cells contained in this brain region in twenty-four actinopterygian species. CONCLUSIONS: Overall, we report a convergent genomic and phenotypic magnification of the olfactory system in nocturnal amphibious fishes. This finding suggests the possibility of an analogous evolutionary event in fish-like tetrapod ancestors during the first steps of the water-to-land transition, favouring terrestrial adaptation through enhanced aerial orientation.
- Klíčová slova
- Amphibious fishes, Evolutionary transition, Olfactory receptors, Sensory evolution,
- MeSH
- aklimatizace MeSH
- biologická evoluce * MeSH
- fyziologická adaptace MeSH
- obratlovci * genetika MeSH
- ryby genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A longstanding issue in biology is whether the intelligence of animals can be predicted by absolute or relative brain size. However, progress has been hampered by an insufficient understanding of how neuron numbers shape internal brain organization and cognitive performance. On the basis of estimations of neuron numbers for 111 bird species, we show here that the number of neurons in the pallial telencephalon is positively associated with a major expression of intelligence: innovation propensity. The number of pallial neurons, in turn, is greater in brains that are larger in both absolute and relative terms and positively covaries with longer post-hatching development periods. Thus, our analyses show that neuron numbers link cognitive performance to both absolute and relative brain size through developmental adjustments. These findings help unify neuro-anatomical measures at multiple levels, reconciling contradictory views over the biological significance of brain expansion. The results also highlight the value of a life history perspective to advance our understanding of the evolutionary bases of the connections between brain and cognition.
- MeSH
- inteligence fyziologie MeSH
- mozek fyziologie MeSH
- neurony * fyziologie MeSH
- ptáci * fyziologie MeSH
- velikost orgánu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH