Objective. Virtual reality (VR) has become a key tool for researching spatial memory. Virtual environments offer many advantages for research in terms of logistics, neuroimaging compatibility etc. However, it is well established in animal models that the lack of physical movement in VR impairs some neural representations of space, and this is considered likely to be true in humans as well. Furthermore, it is unclear how big the disruptive effect stationary navigation is-how much does physical movement during encoding and recall affect human spatial memory and representations of space? What effect does the fatigue of actually walking during tasks have on participants-will physical movement decrease performance, or increase perception of difficulty?Approach. We utilize Augmented reality (AR) to enable participants to perform a spatial memory task while physically moving in the real world, compared to a matched VR task performed while stationary. Our task was performed by a group of healthy participants, by a group of stationary epilepsy patients, as they represent the population from which invasive human spatial signals are typically collected, and, in a case study, by a mobile epilepsy patient with an investigational chronic neural implant (Medtronic Summit RC + STM) streaming real-time continuous hippocampal local field potential data.Main results. Participants showed good performance in both conditions, but reported that the walking condition was significantly easier, more immersive, and more fun than the stationary condition. Importantly, memory performance was significantly better in walking vs. stationary in all groups, including epilepsy patients. We also found evidence for an increase in the amplitude of the theta oscillations associated with movement during the walking condition.Significance. Our findings highlight the importance of paradigms that include physical movement and suggest that integrating AR with movement in real environments can lead to improved techniques for spatial memory research.
- Keywords
- augmented reality, navigation, physical movement, spatial memory, virtual reality,
- MeSH
- Augmented Reality MeSH
- Walking physiology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Spatial Navigation * physiology MeSH
- Spatial Memory * physiology MeSH
- Virtual Reality * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
AIMS: To find out whether neuropsychiatric comorbidity (comMCI) influences spatial navigation performance in amnestic mild cognitive impairment (aMCI). METHODS: We recruited aMCI patients with (n = 21) and without (n = 21) neuropsychiatric comorbidity or alcohol abuse, matched for global cognitive impairment and cognitively healthy elderly participants (HE, n = 22). They completed the Mini-Mental State Examination and a virtual Hidden Goal Task in egocentric, allocentric, and delayed recall subtests. RESULTS: In allocentric navigation, aMCI and comMCI performed significantly worse than HE and similarly to each other. Although aMCI performed significantly worse at egocentric navigation than HE, they performed significantly better than patients with comMCI. CONCLUSIONS: Despite the growing burden of dementia and the prevalence of neuropsychiatric symptoms in the elderly population, comMCI remains under-studied. Since trials often assess "pure" aMCI, we may underestimate patients' navigation and other deficits. This finding emphasizes the importance of taking account of the cognitive effects of psychiatric disorders in aMCI.
- Keywords
- Mild cognitive impairment, neuropsychiatric comorbidity, spatial memory, spatial navigation,
- MeSH
- Amnesia epidemiology psychology MeSH
- Cognitive Dysfunction epidemiology psychology MeSH
- Comorbidity MeSH
- Humans MeSH
- Spatial Navigation * MeSH
- Spatial Memory MeSH
- Aged MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Virtual reality (VR) is widely used in training, simulations, and industrial applications, yet effective locomotion remains challenging due to its impact on spatial orientation and cybersickness. This study investigates the effects of three locomotion methods-hand-tracking (HTR) with teleportation, traditional VR controllers (CTR), and the mechanical interface Cybershoes (CBS)-on navigation performance, perceived usability, and cybersickness during navigation tasks in virtual mazes of three increasing difficulty levels. The experiment involved 15 participants (M = 22.6 years, SD = 1.64), performing a total of 9 trials each (3 methods × 3 mazes), resulting in 135 exposures overall. The HTR method had the longest average maze completion time (127 ± 54 s for the simplest maze), significantly longer compared to both CTR (52 ± 25 s, p < 0.01) and CBS (52 ± 22 s, p < 0.01). CBS showed comparable navigation performance to CTR, slightly outperforming CTR only in the most difficult mazes (108 ± 51 s vs. 115 ± 42 s, p < 0.05). Regarding usability, CTR received the highest ratings (SUS: 74.67 ± 18.52), followed by CBS (67.83 ± 24.07) and HTR (65.83 ± 22.22). However, CBS induced the highest cybersickness (2.9 ± 1.2), significantly higher than HTR (1.8 ± 0.9; p = 0.006), while CTR scored intermediate (2.3 ± 1.1). Results confirm that teleportation (HTR) minimizes cybersickness but negatively impacts spatial orientation. CBS support more efficient navigation in complex tasks but considerably increases cybersickness. Joystick locomotion (CTR) provides the best balance among navigation efficiency, usability, and user comfort. These findings contribute to optimizing locomotion strategies in VR applications.
- Keywords
- Cybersickness, Locomotion methods, Spatial navigation, User experience, Virtual reality,
- MeSH
- Maze Learning * physiology MeSH
- Adult MeSH
- Humans MeSH
- Locomotion * physiology MeSH
- Young Adult MeSH
- Spatial Navigation * physiology MeSH
- User-Computer Interface MeSH
- Virtual Reality * MeSH
- Orientation, Spatial * physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Older age is associated with changes in the brain, including the medial temporal lobe, which may result in mild spatial navigation deficits, especially in allocentric navigation. The aim of the study was to characterize the profile of real-space allocentric (world-centered, hippocampus-dependent) and egocentric (body-centered, parietal lobe dependent) navigation and learning in young vs. older adults, and to assess a possible influence of gender. We recruited healthy participants without cognitive deficits on standard neuropsychological testing, white matter lesions or pronounced hippocampal atrophy: 24 young participants (18-26 years old) and 44 older participants stratified as participants 60-70 years old (n = 24) and participants 71-84 years old (n = 20). All underwent spatial navigation testing in the real-space human analog of the Morris Water Maze, which has the advantage of assessing separately allocentric and egocentric navigation and learning. Of the eight consecutive trials, trials 2-8 were used to reduce bias by a rebound effect (more dramatic changes in performance between trials 1 and 2 relative to subsequent trials). The participants who were 71-84 years old (p < 0.001), but not those 60-70 years old, showed deficits in allocentric navigation compared to the young participants. There were no differences in egocentric navigation. All three groups showed spatial learning effect (p' s ≤ 0.01). There were no gender differences in spatial navigation and learning. Linear regression limited to older participants showed linear (β = 0.30, p = 0.045) and quadratic (β = 0.30, p = 0.046) effect of age on allocentric navigation. There was no effect of age on egocentric navigation. These results demonstrate that navigation deficits in older age may be limited to allocentric navigation, whereas egocentric navigation and learning may remain preserved. This specific pattern of spatial navigation impairment may help differentiate normal aging from prodromal Alzheimer's disease.
- Keywords
- Alzheimer’s disease, aging, allocentric navigation, egocentric navigation, gender, hippocampus, spatial learning, spatial navigation,
- Publication type
- Journal Article MeSH
- Keywords
- Alzheimer’s disease, aging, basal forebrain, hippocampus, spatial navigation,
- MeSH
- Alzheimer Disease pathology MeSH
- Hippocampus pathology physiology MeSH
- Cognitive Dysfunction pathology MeSH
- Humans MeSH
- Spatial Navigation * MeSH
- Aging * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Editorial MeSH
Spatial navigation (SN) impairment is present early in Alzheimer's disease (AD). We tested whether SN performance, self-centered (egocentric) and world-centered (allocentric), was distinguishable from performance on established cognitive functions-verbal and nonverbal memory, executive and visuospatial function, attention/working memory, and language function. 108 older adults (53 cognitively normal [CN] and 55 with amnestic mild cognitive impairment [aMCI]) underwent neuropsychological examination and real-space navigation testing. Subset (n = 63) had automated hippocampal volumetry. In a factor analysis, allocentric and egocentric navigation tasks loaded highly onto the same factor with low loadings on other factors comprising other cognitive functions. In linear regression, performance on other cognitive functions was not, or was only marginally, associated with spatial navigation performance in CN or aMCI groups. After adjustment for age, gender, and education, right hippocampal volume explained 26% of the variance in allocentric navigation in aMCI group. In conclusion, spatial navigation, a known cognitive marker of early AD, may be distinguished from other cognitive functions. Therefore, its assessment along with other major cognitive functions may be highly beneficial in terms of obtaining a comprehensive neuropsychological profile.
- Keywords
- Alzheimer's disease, Hippocampus, Mild cognitive impairment, Morris Water Maze, Neuropsychology, Spatial navigation,
- MeSH
- Hippocampus diagnostic imaging pathology MeSH
- Cognition physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Memory physiology MeSH
- Spatial Navigation physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Aging pathology psychology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Spatial navigation is a skill of determining and maintaining a trajectory from one place to another. Mild progressive decline of spatial navigation develops gradually during the course of physiological ageing. Nevertheless, severe spatial navigation deficit can be the first sign of incipient Alzheimer's disease (AD), occurring in the stage of mild cognitive impairment (MCI), preceding the development of a full blown dementia. Patients with amnestic MCI, especially those with the hippocampal type of amnestic syndrome, are at very high risk of AD. These patients present with the same pattern of spatial navigation impairment as do the patients with mild AD. Spatial navigation testing of elderly as well as computer tests developed for routine clinical use thus represents a possibility for further investigation of this cognitive domain, but most of all, an opportunity for making early diagnosis of AD.
- Keywords
- Alzheimer's disease, allocentric navigation, egocentric navigation, mild cognitive impairment, pathological ageing, physiological ageing, spatial navigation,
- Publication type
- Journal Article MeSH
BACKGROUND: Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS: One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS: Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION: Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.
- Keywords
- Basal forebrain, Progression risk, Spatial navigation, Structural covariance network, Subjective cognitive decline,
- MeSH
- Alzheimer Disease * complications MeSH
- Cognitive Dysfunction * psychology MeSH
- Humans MeSH
- Neuropsychological Tests MeSH
- Disease Progression MeSH
- Spatial Navigation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The apolipoprotein E (APOE) ɛ4 allele is associated with episodic memory and spatial navigation deficits. The brain-derived neurotrophic factor (BDNF) Met allele may further worsen memory impairment in APOEɛ4 carriers but its role in APOEɛ4-related spatial navigation deficits has not been established. OBJECTIVE: We examined influence of APOE and BDNF Val66Met polymorphism combination on spatial navigation and volumes of selected navigation-related brain regions in cognitively unimpaired (CU) older adults and those with amnestic mild cognitive impairment (aMCI). METHODS: 187 participants (aMCI [n = 116] and CU [n = 71]) from the Czech Brain Aging Study were stratified based on APOE and BDNF Val66Met polymorphisms into four groups: ɛ4-/BDNFVal/Val, ɛ4-/BDNFMet, ɛ4+/BDNFVal/Val, and ɛ4+/BDNFMet. The participants underwent comprehensive neuropsychological examination, brain MRI, and spatial navigation testing of egocentric, allocentric, and allocentric delayed navigation in a real-space human analogue of the Morris water maze. RESULTS: Among the aMCI participants, the ɛ4+/BDNFMet group had the least accurate egocentric navigation performance (p < 0.05) and lower verbal memory performance than the ɛ4-/BDNFVal/Val group (p = 0.007). The ɛ4+/BDNFMet group had smaller hippocampal and entorhinal cortical volumes than the ɛ4-/BDNFVal/Val (p≤0.019) and ɛ4-/BDNFMet (p≤0.020) groups. Among the CU participants, the ɛ4+/BDNFMet group had less accurate allocentric and allocentric delayed navigation performance than the ɛ4-/BDNFVal/Val group (p < 0.05). CONCLUSION: The combination of APOEɛ4 and BDNF Met polymorphisms is associated with more pronounced egocentric navigation impairment and atrophy of the medial temporal lobe regions in individuals with aMCI and less accurate allocentric navigation in CU older adults.
- Keywords
- Alzheimer’s disease, Morris water maze, apolipoproteins E, brain-derived neurotrophic factor, entorhinal cortex, episodic memory, gene polymorphism, magnetic resonance imaging, mild cognitive impairment, spatial navigation,
- MeSH
- Apolipoprotein E4 genetics MeSH
- Cognitive Dysfunction genetics physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain-Derived Neurotrophic Factor genetics MeSH
- Polymorphism, Genetic MeSH
- Spatial Navigation physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Apolipoprotein E4 MeSH
- BDNF protein, human MeSH Browser
- Brain-Derived Neurotrophic Factor MeSH
Age-related spatial navigation decline is more pronounced in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia. We used a realistic-looking virtual navigation test suite to analyze different aspects of visuospatial processing in typical and atypical aging. A total of 219 older adults were recruited from the Czech Brain Aging Study cohort. Cognitively normal older adults (CN; n = 78), patients with amnestic MCI (n = 75), and those with mild AD dementia (n = 66) underwent three navigational tasks, cognitive assessment, and brain MRI. Route learning and wayfinding/perspective-taking tasks distinguished the groups as performance and learning declined and specific visuospatial strategies were less utilized with increasing cognitive impairment. Increased perspective shift and utilization of non-specific strategies were associated with worse task performance across the groups. Primacy and recency effects were observed across the groups in the route learning and the wayfinding/perspective-taking task, respectively. In addition, a primacy effect was present in the wayfinding/perspective-taking task in the CN older adults. More effective spatial navigation was associated with better memory and executive functions. The results demonstrate that a realistic and ecologically valid spatial navigation test suite can reveal different aspects of visuospatial processing in typical and atypical aging.
- Keywords
- Alzheimer’s disease, mild cognitive impairment, navigation strategies, perspective taking, route learning, spatial navigation, visuospatial functions, wayfinding,
- Publication type
- Journal Article MeSH