Nejvíce citovaný článek - PubMed ID 35328613
Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
- Klíčová slova
- Aegilops biuncialis, Aegilops geniculata, chromosome flow sorting, flow karyotyping, genome dissecting,
- Publikační typ
- časopisecké články MeSH