Goatgrasses with U- and M-genomes are important sources of new alleles for wheat breeding to maintain yield and quality under extreme conditions. However, the introgression of beneficial traits from wild Aegilops species into wheat has been limited by poor knowledge of their genomes and scarcity of molecular tools. Here, we present the first linkage map of allotetraploid Aegilops biuncialis Vis., developed using 224 F2 individuals derived from a cross between MvGB382 and MvGB642 accessions. The map comprises 5663 DArTseq markers assigned to 15 linkage groups corresponding to 13 chromosomes. Chromosome 1Mb could not be constructed due to a lack of recombination caused by rearrangements in the MvGB382 accession. The genetic map spans 2518 cM with an average marker density of 2.79 cM. The skeleton map contains 920 segregating markers, divided between the Mb sub-genome (425 markers) and the Ub sub-genome (495 markers). Chromosomes of the Mb sub-genome, originating from Aegilops comosa Sm. in Sibth. et Sm., show well-preserved collinearity with Triticum aestivum L. chromosomes. In contrast, chromosomes of the Ub sub-genome, originating from Aegilops umbellulata Zhuk., exhibit a varying degree of collinearity, with 1Ub, 3Ub, and 5Ub retaining a substantial level of collinearity with Triticum aestivum, while 2Ub, 4Ub, 6Ub, and 7Ub show significant rearrangements. A quantitative trait locus affecting fertility was identified near the centromere on the long arm of chromosome 3Mb, explaining 23.5% of the variance. The genome structure of Aegilops biuncialis, highlighted by the genetic map, provides insights into the speciation within the species and will support alien gene transfer into wheat.
Acanthocephalan parasites are often overlooked in many areas of research, and satellitome and cytogenetic analyzes are no exception. The species of the genus Acanthocephalus are known for their very small chromosomes with ambiguous morphology, which makes karyotyping difficult. In this study, we performed the first satellitome analysis of three Acanthocephalus species to identify species- and chromosome-specific satellites that could serve as cytogenetic markers. RepeatExplorer2 revealed a remarkably high number of species-specific repeats, with a predominance of satellite DNAs, alongside variations in repetitive content between sexes. Five satellites in A. anguillae, two in A. lucii and six in A. ranae were successfully mapped to chromosomes using FISH. Each satellite showed a clustered hybridization signal at specific chromosomal locations, which allowed us to create a schematic representation of the distribution of satellites for each species. These newly identified satellites proved to be useful chromosomal markers for the accurate identification of homologous chromosome pairs. No FISH-positive signals were observed on the supernumerary chromosomes of A. anguillae and A. lucii, supporting the hypothesis that these chromosomes have recent origin.
- Klíčová slova
- Acanthocephala, Fluorescence in situ hybridization, Repeat, RepeatExplorer2, Satellite DNA,
- MeSH
- Acanthocephala * genetika klasifikace MeSH
- chromozomy genetika MeSH
- cytogenetické vyšetření metody MeSH
- druhová specificita * MeSH
- genetické markery MeSH
- hybridizace in situ fluorescenční * MeSH
- karyotyp MeSH
- karyotypizace metody MeSH
- satelitní DNA * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- genetické markery MeSH
- satelitní DNA * MeSH
Crop breeding advancement is hindered by the imperfection of methods to reveal genes underlying key traits. Genome-wide Association Study (GWAS) is one such method, identifying genomic regions linked to phenotypes. Post-GWAS analyses predict candidate genes and assist in causative mutation (CM) recognition. Here, we assess post-GWAS approaches, address limitations in omics data integration and stress the importance of evaluating associated variants within a broader context of publicly available datasets. Recent advances in bioinformatics tools and genomic strategies for CM identification and allelic variation exploration are reviewed. We discuss the role of markers and marker panel development for more precise breeding. Finally, we highlight the perspectives and challenges of GWAS-based CM prediction for complex quantitative traits.
- Klíčová slova
- Causal gene, Causative mutation, Crop breeding, GWAS, Molecular markers,
- MeSH
- celogenomová asociační studie * MeSH
- fenotyp MeSH
- genetické markery MeSH
- lokus kvantitativního znaku genetika MeSH
- šlechtění rostlin * metody MeSH
- zemědělské plodiny * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- genetické markery MeSH
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.
- Klíčová slova
- Aegilops biuncialis, Chromosome addition lines, DArTseq analysis, Thousand-grain weight, Wheat-Aegilops introgressions,
- MeSH
- Aegilops * genetika MeSH
- chromatin * genetika metabolismus MeSH
- chromozomy rostlin * genetika MeSH
- genetické markery MeSH
- genom rostlinný * MeSH
- genotyp MeSH
- genotypizační techniky MeSH
- genová introgrese MeSH
- mapování chromozomů MeSH
- pšenice * genetika MeSH
- šlechtění rostlin metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin * MeSH
- genetické markery MeSH
AIM: Cutaneous T-cell lymphomas (CTCL) can be described as chronic skin inflammation lesions with the content of malignant T cells and they are considered to be T-cell-mediated skin diseases. CD147 is recognized as a 58-kDa cell surface glycoprotein of the immunoglobulin superfamily; it can induce the synthesis of MMPs (matrix metalloproteinases) on the surface of tumor cells where it was originally identified. It can also function in adjacent tumor fibroblasts using CD147-CD147 interactions. The polymorphism rs8259 T/A is situated in the untranslated region (3'UTR) of the CD147 gene. HLA DRB1*1501 takes part in the process of presentation and recognition of different antigens to T cells. It can be expressed by antigen-presenting cells-macrophages, dendritic cells, and B cells. The aim of the study is to test genotype-phenotype associations of both polymorphisms including therapy in a large cohort of CTCL patients. MATERIALS AND METHODS: A final total of 104 CTCL patients were enrolled in the study. For the first remission at the clinic department, they were treated by means of local skin-directed therapy, phototherapy, and systemic therapy. Genomic DNA was isolated from peripheral blood leukocytes. A standard technique using proteinase K was applied. The polymorphisms rs8259 T/A (CD147 gene) and rs3135388 (HLA DRB1*1501) were detected through standard PCR-restriction fragment length polymorphism methods. RESULTS: The severity of the disease (patients with parapsoriasis, stages IA and IB, vs patients with stages IIB, IIIA, and IIIB) was associated with the CD147 genotype: the AA variant was 3.38 times more frequent in more severe cases, which reflects the decision on systemic therapy (p = 0.02, specificity 0.965). The AA genotype in the CD147 polymorphism was 12 times more frequent in patients who underwent systemic therapy of CTCL compared to those not treated with this therapy (p = 0.009, specificity 0.976). The same genotype was also associated with radiotherapy-it was observed 14 times more frequently in patients treated with radiotherapy (p = 0.009, specificity 0.959). In patients treated with interferon α therapy, the AA genotype was observed to be 5.85 times more frequent compared to the patients not treated with interferon therapy (p = 0.03, specificity 0.963). The HLA DRB1*1501 polymorphism was associated with local skin-directed therapy of CTCL. The CC genotype of the polymorphism was observed to be 3.57 times more frequent in patients treated with local therapy (p = 0.008, specificity 0.948). When both polymorphisms had been calculated together, even better results were obtained: the AACC double genotype was 11 times more frequent in patients with severe CTCL (p = 0.009, specificity 0.977). The TACT double genotype was associated with local skin-directed therapy (0.09 times lower frequency, p = 0.007, sensitivity 0.982). The AACC genotype was 8.9 times more frequent in patients treated by means of systemic therapy (p = 0.02, specificity 0.976) and as many as 18.8 times more frequent in patients treated with radiotherapy (p = 0.005, specificity 0.969). Thus, the AACC double genotype of CD147 and DRB1*1501 polymorphisms seems to be a clinically highly specific marker of severity, systemic therapy and radiotherapy of patients with T-cell lymphoma. CONCLUSION: Although genotyping results were not known during the treatment decision and could not modify it, the clinical decision on severity and therapy reflected some aspects of the genetic background of this complicated T-cell-associated disease very well.
- Klíčová slova
- CD147, CTCL, HLA DRB1*1501,
- MeSH
- genetické markery MeSH
- HLA-DRB1 řetězec genetika MeSH
- kožní T-buněčný lymfom * farmakoterapie genetika MeSH
- lidé MeSH
- lymfom T-buněčný * MeSH
- nádory kůže * farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- genetické markery MeSH
- HLA-DRB1 řetězec MeSH
Metabarcoding is revolutionizing fundamental research in ecology by enabling large-scale detection of species and producing data that are rich with community context. However, the benefits of metabarcoding have yet to be fully realized in fields of applied ecology, especially those such as classical biological control (CBC) research that involve hyperdiverse taxa. Here, we discuss some of the opportunities that metabarcoding provides CBC and solutions to the main methodological challenges that have limited the integration of metabarcoding in existing CBC workflows. We focus on insect parasitoids, which are popular and effective biological control agents (BCAs) of invasive species and agricultural pests. Accurately identifying native, invasive and BCA species is paramount, since misidentification can undermine control efforts and lead to large negative socio-economic impacts. Unfortunately, most existing publicly accessible genetic databases cannot be used to reliably identify parasitoid species, thereby limiting the accuracy of metabarcoding in CBC research. To address this issue, we argue for the establishment of authoritative genetic databases that link metabarcoding data to taxonomically identified specimens. We further suggest using multiple genetic markers to reduce primer bias and increase taxonomic resolution. We also provide suggestions for biological control-specific metabarcoding workflows intended to track the long-term effectiveness of introduced BCAs. Finally, we use the example of an invasive pest, Drosophila suzukii, in a reflective "what if" thought experiment to explore the potential power of community metabarcoding in CBC.
- Klíčová slova
- Drosophila suzukii, invasive species, molecular identification, reference library,
- MeSH
- Drosophila MeSH
- ekologie * MeSH
- genetické markery MeSH
- hmyz * MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Head and neck cancer is often diagnosed late and prognosis for most head and neck cancer patients remains poor. To aid early detection, we developed a risk prediction model based on demographic and lifestyle risk factors, human papillomavirus (HPV) serological markers and genetic markers. A total of 10 126 head and neck cancer cases and 5254 controls from five North American and European studies were included. HPV serostatus was determined by antibodies for HPV16 early oncoproteins (E6, E7) and regulatory early proteins (E1, E2, E4). The data were split into a training set (70%) for model development and a hold-out testing set (30%) for model performance evaluation, including discriminative ability and calibration. The risk models including demographic, lifestyle risk factors and polygenic risk score showed a reasonable predictive accuracy for head and neck cancer overall. A risk model that also included HPV serology showed substantially improved predictive accuracy for oropharyngeal cancer (AUC = 0.94, 95% CI = 0.92-0.95 in men and AUC = 0.92, 95% CI = 0.88-0.95 in women). The 5-year absolute risk estimates showed distinct trajectories by risk factor profiles. Based on the UK Biobank cohort, the risks of developing oropharyngeal cancer among 60 years old and HPV16 seropositive in the next 5 years ranged from 5.8% to 14.9% with an average of 8.1% for men, 1.3% to 4.4% with an average of 2.2% for women. Absolute risk was generally higher among individuals with heavy smoking, heavy drinking, HPV seropositivity and those with higher polygenic risk score. These risk models may be helpful for identifying people at high risk of developing head and neck cancer.
- Klíčová slova
- HPV serostatus, head and neck cancer risk, polygenic risk score, risk prediction models,
- MeSH
- genetické markery MeSH
- infekce papilomavirem * MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské papilomaviry MeSH
- lidský papilomavirus 16 genetika MeSH
- nádory hlavy a krku * MeSH
- nádory orofaryngu * MeSH
- onkogenní proteiny virové * genetika MeSH
- protilátky virové MeSH
- rizikové faktory MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- genetické markery MeSH
- onkogenní proteiny virové * MeSH
- protilátky virové MeSH
- transkripční faktory MeSH
PURPOSE: Head and neck squamous cell carcinomas (HNSCCs) are a molecularly, histologically, and clinically heterogeneous set of tumors originating from the mucosal epithelium of the oral cavity, pharynx, and larynx. This heterogeneous nature of HNSCC is one of the main contributing factors to the lack of prognostic markers for personalized treatment. The aim of this study was to develop and identify multi-omics markers capable of improved risk stratification in this highly heterogeneous patient population. METHODS: In this retrospective study, we approached this issue by establishing radiogenomics markers to identify high-risk individuals in a cohort of 127 HNSCC patients. Hybrid in vivo imaging and whole-exome sequencing were employed to identify quantitative imaging markers as well as genetic markers on pathway-level prognostic in HNSCC. We investigated the deductibility of the prognostic genetic markers using anatomical and metabolic imaging using positron emission tomography combined with computed tomography. Moreover, we used statistical and machine learning modeling to investigate whether a multi-omics approach can be used to derive prognostic markers for HNSCC. RESULTS: Radiogenomic analysis revealed a significant influence of genetic pathway alterations on imaging markers. A highly prognostic radiogenomic marker based on cellular senescence was identified. Furthermore, the radiogenomic biomarkers designed in this study vastly outperformed the prognostic value of markers derived from genetics and imaging alone. CONCLUSION: Using the identified markers, a clinically meaningful stratification of patients is possible, guiding the identification of high-risk patients and potentially aiding in the development of effective targeted therapies.
- Klíčová slova
- Artificial intelligence, Biomarkers, Cancer genomics, Head and neck cancer, Machine learning, Radiomics,
- MeSH
- dlaždicobuněčné karcinomy hlavy a krku diagnostické zobrazování genetika MeSH
- genetické markery MeSH
- hodnocení rizik MeSH
- lidé MeSH
- nádory hlavy a krku * diagnostické zobrazování genetika MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- spinocelulární karcinom * patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- Názvy látek
- genetické markery MeSH
The current progress and increasing knowledge about the genetic causes of cancer opens up new possibilities for its treatment. However, it is necessary to combine the results obtained using classical pathological methods with sensitive, multiplex molecular pathological methods. The method that meets the required criteria is MLPA based on multiplex PCR reaction. This method detects both changes in gene copy number and DNA methylation and, last but not least, point mutations. The MLPA reaction is applicable to even highly fragmented DNA. At the same time, it is a robust method that can be performed on standard thermocyclers, the fluorescent tip label requires automatic sequencers. Up to 50 genetic markers can be tested in one reaction, a number that allows a diagnostic and prognostic conclusion. All these features lead to the routine use of MLPA analysis not only in diagnosis but also in cancer research. The present article aims to summarize the different types of MLPA reactions, its benefits, but also the potential pitfalls.
- Klíčová slova
- MLPA, Molecular pathology, PCR, Tumors of the central nervous system,
- MeSH
- DNA genetika MeSH
- genetické markery MeSH
- genová dávka MeSH
- lidé MeSH
- metylace DNA * MeSH
- nádory centrálního nervového systému * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- genetické markery MeSH