Nejvíce citovaný článek - PubMed ID 35423552
Copolymer chain formation of 2-oxazolines by in situ 1H-NMR spectroscopy: dependence of sequential composition on substituent structure and monomer ratios
In recent years, polymerization-induced self-assembly (PISA) has emerged as a powerful method for the straightforward synthesis of polymer nanoparticles at high concentration. In this study, we describe for the first time the synthesis of poly(2-oxazoline) nanoparticles by dispersion cationic ring-opening polymerization-induced self-assembly (CROPISA) in n-dodecane. Specifically, a n-dodecane-soluble aliphatic poly(2-(3-ethylheptyl)-2-oxazoline) (PEHOx) block was chain-extended with poly(2-phenyl-2-oxazoline) (PPhOx). While the PhOx monomer is soluble in n-dodecane, its polymerization leads to n-dodecane-insoluble PPhOx, which leads to in situ self-assembly of the formed PEHOx-b-PPhOx copolymers. The polymerization kinetics and micellization upon second block formation were studied, and diverse nanoparticle dispersions were prepared, featuring varying block lengths and polymer concentrations, leading to dispersions with distinctive morphologies and physical properties. Finally, we developed a single-step protocol for the synthesis of polymer nanoparticles directly from monomers via gradient copolymerization CROPISA, which exploits the significantly greater reactivity of EHOx compared to that of PhOx during the statistical copolymerization of both monomers. Notably, this approach provides access to formulations with monomer compositions otherwise unattainable through the block copolymerization method. Given the synthetic versatility and application potential of poly(2-oxazolines), the developed CROPISA method can pave the way for advanced nanomaterials with favorable properties as demonstrated by using the obtained nanoparticles for stabilization of Pickering emulsions.
- Klíčová slova
- CROP, Copolymerization, Nanoparticles, PISA, Poly(2-oxazoline)s,
- Publikační typ
- časopisecké články MeSH
Recently, suitably sized polymer-based nanogels containing functional groups for the binding of biologically active substances and ultimately degradable to products that can be removed by glomerular filtration have become extensively studied systems in the field of drug delivery. Herein, we designed and tailored the synthesis of hydrophilic and biodegradable poly[N-(2-hydroxypropyl) methacrylamide-co-N,N'-bis(acryloyl) cystamine-co-6-methacrylamidohexanoyl hydrazine] (PHPMA-BAC-BMH) nanogels. The facile and versatile dispersion polymerization enabled the preparation of nanogels with a diameter below 50 nm, which is the key parameter for efficient and selective passive tumor targeting. The effects of the N,N'-bis(acryloyl) cystamine crosslinker, polymerization composition, and medium including H2O/MetCel and H2O/EtCel on the particle size, particle size distribution, morphology, and polymerization kinetics and copolymer composition were investigated in detail. We demonstrated the formation of a 38 nm colloidally stable PHPMA-BAC-BMH nanogel with a core-shell structure that can be rapidly degraded in the presence of 10 mM glutathione solution under physiologic conditions. The nanogels were stable in an aqueous solution modeling the bloodstream; thus, these nanogels have the potential to become highly important carriers in the drug delivery of various molecules.
- Klíčová slova
- N-(2-hydroxypropyl) methacrylamide, biodegradable, dispersion polymerization, glutathione, nanogel,
- Publikační typ
- časopisecké články MeSH