Most cited article - PubMed ID 35456986
Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs
Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication. The analysis also showed that very popular synchronisation protocols based on the double thymidine block can result in changes in the UNG2 content and uracil excision rate. In response, we propose a new method for the description of the changes of the content and the activity of different cell components during cell cycle without the necessity to use synchronisation protocols.
- MeSH
- Cell Cycle MeSH
- Kinetics MeSH
- Humans MeSH
- DNA Repair MeSH
- DNA Replication * MeSH
- S Phase MeSH
- Uracil-DNA Glycosidase * metabolism MeSH
- Uracil metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Uracil-DNA Glycosidase * MeSH
- Uracil MeSH
Vaccines represent an essential tool for the prevention of infectious diseases. Upon administration, a complex interaction occurs between the vaccine formulation and the recipient's immune system, ultimately resulting in protection against disease. Significant variability exists in individual and population responses to vaccination, and these differences remain the focus of the ongoing research. Notably, well-documented factors, such as age, gender, and genetic predisposition, influence immune responses. In contrast, the effects of overweight and obesity have not been as thoroughly investigated. The evidence indicates that a high body mass index (BMI) constitutes a significant risk factor for infections in general, with adipose tissue playing a crucial role in modulating the immune response. Furthermore, suboptimal levels of vaccine seroconversion have been observed among individuals with obesity. This review provides a plausible examination of the immunity and protection conferred by various vaccines in individuals with an overweight status, offering a comprehensive analysis of the mechanisms to enhance vaccination efficiency.
- Keywords
- adipokines, gender, immune response, inactivated vaccine, mRNA vaccines, obesity, recombinant vaccines, thyroid hormones, vaccine response,
- MeSH
- Body Mass Index MeSH
- Humans MeSH
- Obesity * immunology MeSH
- Sex Factors MeSH
- Adipose Tissue * immunology MeSH
- Vaccination MeSH
- Vaccines * immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Vaccines * MeSH