Most cited article - PubMed ID 35490458
Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method
BACKGROUND AND OBJECTIVE: The use of bone allograft reconstructions after tumor resection can introduce significant complications. Stable fixation is required to decrease the incidence of mechanical complications of segmental bone allografts. The purpose of the present study is to compare plating fixation methods of diaphyseal allografts after intercalary resection of the femur. METHODS: We created four defined fixation models using plates and/or intramedullary polymethylmethacrylate (PMMA) to simulate typical bone tumor resection with intercalary allograft reconstruction. One angularly stable plate (DFP) with 13 locking screws and fresh frozen allografts (labeled "I") were used for bone reconstruction. Three modified reconstructions were created: "II" included a supplementary plate (SP) with four locking screws, "III" was augmented with intramedullary PMMA in the allograft, and "IV" combined intramedullary PMMA and both plates. We applied a load model that simulates partial weight bearing on the lower limb to simulate the load during postoperative rehabilitation. RESULTS: The highest stress in the DFP occurred at the allograft-bone transition, with variant IV reaching 297 MPa. PMMA augmentation reduced median interfragmentary motion (IFM) and sliding distances, with variant III achieving the lowest distal sliding distance (0.9 μm) in the distal area. Supplementary plate fixation reduced maximal and median proximal IFM distances (86.9 μm in variant II vs. 116.0 μm in variant I) but increased sliding distances (23.7 μm in variant II vs. 0.6 μm in variant I). CONCLUSIONS: PMMA augmentation reduces IFM and sliding distances, enhancing rigidity, particularly in the distal area. Supplementary plate fixation decreases IFM distances in the proximal area but increases sliding distances in the same region. Variants III and IV demonstrate lower IFM and sliding distances in the distal area overall. Variant III shows very low sliding distances in both distal and proximal areas. Variant IV combines improved firmness with slightly higher stress levels.
- MeSH
- Allografts MeSH
- Biomechanical Phenomena MeSH
- Femur * surgery MeSH
- Bone Plates * MeSH
- Bone Screws MeSH
- Humans MeSH
- Femoral Neoplasms * surgery MeSH
- Bone Neoplasms * surgery MeSH
- Computer Simulation * MeSH
- Polymethyl Methacrylate MeSH
- Bone Transplantation * methods MeSH
- Plastic Surgery Procedures * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Polymethyl Methacrylate MeSH
BACKGROUND: Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. METHODS: A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. RESULTS: The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. CONCLUSION: The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components.
- Keywords
- All-polyethylene tibial component, Computational modeling, FEA, Finite element method, Knee replacement, Metal-backed tibial component, TKR, Total knee arthroplasty,
- MeSH
- Finite Element Analysis MeSH
- Metals MeSH
- Humans MeSH
- Polyethylene MeSH
- Prosthesis Design MeSH
- Knee Prosthesis * MeSH
- Aged MeSH
- Tibia diagnostic imaging surgery MeSH
- Arthroplasty, Replacement, Knee * MeSH
- Check Tag
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Metals MeSH
- Polyethylene MeSH
Numerous studies have compared metal-backed components (MBTs) and all-polyethylene tibial components (APTs), but none of them specifically analysed the clinical results and the overall patient preference in patients who had undergone a staged bilateral knee replacement. The purpose of this study is to compare clinical results, perceived range of motion, and overall implant preference among patients who had undergone staged bilateral knee replacement with an APT and contralateral knee replacement with MBTs. A dataset of 62 patients from a single centre who underwent staged bilateral TKA between 2009 and 2022 was selected and retrospectively analysed. Tibial component removal was performed in three knees overall, all of which had MBTs. The mean measured Knee Score (KS) of knees with APTs was 78.37 and that of contralateral knees with MBTs was 77.4. The mean measured Function (FS) of knees with APTs was 78.22, and that of contralateral knees with MBs was 76.29. The mean flexion angle of knees with APTs was 103.8 and that for knees with MBTs was 101.04 degrees. A total of 54.8% of the patients preferred the knee that received APTs over contralateral MBTs. In our cohort, TKA with an APT in one knee and an MBT in the contralateral knee recorded similar clinical results and perceived ranges of motion. Patients in general preferred the knee that received an APT over contralateral knee with an MBT.
- Keywords
- all-polyethylene tibia, bilateral knee replacement, metal-backed tibia, staged bilateral knee arthroplasty, total knee arthroplasty,
- Publication type
- Journal Article MeSH
PURPOSE: This study aims to compare total knee replacement (TKA) with NexGen All-Poly (APT) and NexGen Metal-Backed (MBT) in terms of implant survivorship, reasons leading to implant failure and functional results of defined age categories. METHODS: A single-centre, retrospective evaluation of 812 patients who underwent knee replacement with NexGen CR between 2005 and 2021, comparing a modern congruent APT component to a modular MBT equivalent component using a similar surgical technique at a notable mean follow-up duration. Implant survival, functional outcomes using the Knee Society Score and range of motion were evaluated and compared in different age categories. RESULTS: Of the 812 NexGen CR TKAs performed at our institution, 410 (50.4%) used APT components and 402 (49.6%) MBT components. The survival rate of NexGen APT was 97.1% and that of NexGen MBT was 93.2% (p = 0.36). Removal of the implant occurred overall in 15 cases, for MBT in ten cases, and for APT in four cases. The FS was proved to be significantly higher when APT components were implanted in younger patients than for MBT (p = 0.005). A similar range of motion between the components was recorded (p = 0.1926). CONCLUSION: Under defined conditions, we measured the clinical results of implants from a single manufacturer implanted in a single department using a similar surgical technique. Considering the limitations, we suggest that all-polyethylene tibial components are equal or even superior to metal-backed ones across the examined age categories.
- Keywords
- All-polyethylene knee replacement, Implant survival, Knee Society Score, Knee arthroplasty, NexGen,
- MeSH
- Metals MeSH
- Humans MeSH
- Polyethylene MeSH
- Prosthesis Design MeSH
- Knee Prosthesis * MeSH
- Retrospective Studies MeSH
- Arthroplasty, Replacement, Knee * adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Metals MeSH
- Polyethylene MeSH