Nejvíce citovaný článek - PubMed ID 35749122
Remarkably stable metal-organic frameworks on an inert substrate: M-TCNQ on graphene (M = Ni, Fe, Mn)
Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N4 single-atom sites, where the metal-organic structure is modulated by 0.4 Å corrugation of an inert graphene/Ir(111) support. Using scanning tunneling microscopy and density functional theory, we show that the support corrugation significantly affects the reactivity of the system, as the sites above the support "valleys" bind TCNQ (tetracyanoquinodimethane) significantly stronger than the sites above the "hills". The experimental temperature stability of TCNQ varies by more than 60 °C, while computations indicate more than 0.3 eV variation of TCNQ adsorption energy across the Fe-N4 sites placed atop different regions of the corrugated graphene unit cell. The origin of this effect is steric hindrance, which plays a role whenever large molecules interact with neighboring single-atom catalyst sites or when multiple reactants coadsorb on such sites. Our work demonstrates that such effects can be quantitatively studied using model SAC systems supported on chemically inert and physically corrugated supports.
- Klíčová slova
- 2D metal−organic frameworks, Fe−N4 site, adsorption, density functional theory, scanning tunneling microscopy, single atom catalysis,
- Publikační typ
- časopisecké články MeSH
The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The dz2 center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.
- Publikační typ
- časopisecké články MeSH