Nejvíce citovaný článek - PubMed ID 35753284
Nickel uptake in hydroponics and elemental profile in relation to cultivation reveal variability in three Hypericum species
Mercury (Hg) content measured in five epiphytic lichen species collected in Slovakia mountain forests ranged from 30 to 100 ng/g DW and was species-specific, decreasing in the order Hypogymnia > Pseudevernia > Usnea > Xanthoria > Evernia prunastri (but polluted sites had no impact on Hg amount in Xanthoria). Evernia was therefore used to study the impact of short-term exogenous Hg (100 µM, 24 h) and possible amelioration of Hg toxicity by nitric oxide (NO) donor sodium nitroprusside (SNP). NO was efficiently released from SNP as detected by two staining reagents and fluorescence microscopy and reduced Hg-induced ROS signal and absorption of Hg by thalli of Evernia prunastri. At the same time, NO ameliorated Hg-induced depletion of metabolites such as ascorbic acid and non-protein thiols, but not of free amino acids. The amount of metabolites, including soluble phenols, was reduced by excess Hg per se. On the contrary, NO was unable to restore Hg-stimulated depletion of chlorophyll autofluorescence but mitigated the decline of some macronutrients (K and Ca). Data confirm that accumulation of Hg in the epiphytic lichens is species-specific and that NO is a vital molecule in Evernia prunastri that provides protection against Hg-induced toxicity with considerable positive impact on metabolic changes.
- Klíčová slova
- antioxidants, biomonitoring, heavy metals, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Cadmium (Cd) or nickel (Ni) were applied as a foliar spray (1 µM solution over one month) to mimic air pollution and to monitor metabolic responses and oxidative stress in the pteridophyte species. Exogenous metals did not affect the metal content of the soil and had relatively little effect on the essential elements in leaves or rhizomes. The amounts of Cd and Ni were similar in treated leaves (7.2 µg Cd or 5.3 µg Ni/g DW in mature leaves compared with 0.4 µg Cd or 1.2 µg Ni/g DW in the respective control leaves), but Ni was more abundant in rhizomes (56.6 µg Ni or 3.4 µg Cd/g DW), resulting in a higher Cd translocation and bioaccumulation factor. The theoretical calculation revealed that ca. 4% of Cd and 5.5% of Ni from the applied solution per plant/pot was absorbed. Excess Cd induced stronger ROS production followed by changes in SOD and CAT activities, whereas nitric oxide (NO) stimulation was less intense, as detected by confocal microscopy. The hadrocentric vascular bundles in the petioles also showed higher ROS and NO signals under metal excess. This may be a sign of increased ROS formation, and high correlations were observed. Proteins and amino acids were stimulated by Cd or Ni application in individual organs, whereas phenols and flavonols were almost unaffected. The data suggest that even low levels of exogenous metals induce an oxidative imbalance, although no visible damage is observed, and that the responses of ferns to metals are similar to those of seed plants or algae.
- Klíčová slova
- antioxidant molecules, heavy metals, reactive oxygen species, soil pollution,
- MeSH
- Adiantum * metabolismus MeSH
- kadmium metabolismus MeSH
- kapradiny * metabolismus MeSH
- látky znečišťující půdu * toxicita chemie MeSH
- rostliny metabolismus MeSH
- těžké kovy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- Nickel-56 MeSH Prohlížeč
- těžké kovy * MeSH