Nejvíce citovaný článek - PubMed ID 35840683
The Effect of Residual Pesticide Application on Microbiomes of the Storage Mite Tyrophagus putrescentiae
Storage mites consume stored products in interaction with environmental microorganisms, resulting in the destruction of infested food and providing specific odours. Here we simulated the effect of mite grazing on oat flakes. Spent growth medium (SPGM) was obtained from seven mite cultures and mixed with oat flakes as the source of faeces and microbes. SPGM-treated diets were offered to 4 mite cultures. The microbiomes were analysed using sequencing of V4_16S_DNA. Mite growth tests, food preferences, and microbiome changes were observed in correlation with SPGM type and mite cultures. The microbiome consisted of 41 OTUs belonging to mite-associated bacteria and faeces bacteria. The composition of the microbiome depends more on the source of SPGM than on mite culture. The SPGM diet accelerated mite population growth and influenced mite food choice, although the effect was dependent on both types of SPGM and mite culture. Kocuria, Brevibacterium, Virgibacillus, and Staphylococcus profiles in SPGM added into diets showed positive correlations to mite population growth. The Kocuria profile in the bodies of mites was positively correlated with mite population growth. The results showed that mites are influenced by SPGM-treated diets, and mite feeding influences the environmental microbiome. The most beneficial was the mite interaction with Kocuria.
- Klíčová slova
- allergens, bacteria, digestion, faeces, interaction,
- MeSH
- Acaridae * mikrobiologie růst a vývoj MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- feces mikrobiologie MeSH
- mikrobiologie životního prostředí * MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
A novel Bartonella-like symbiont (BLS) of Tyrophagus putrescentiae was characterized. BLS formed a separate cluster from the Bartonella clade together with an ant symbiont. BLS was present in mite bodies (103 16S DNA copies/mite) and feces but was absent in eggs. This indicated the presence of the BLS in mite guts. The BLS showed a reduction in genome size (1.6 Mb) and indicates gene loss compared to Bartonella apis. The BLS can be interacted with its host by using host metabolic pathways (e.g., the histidine and arginine metabolic pathways) as well as by providing its own metabolic pathways (pantothenate and lipoic acid) to the host, suggesting the existence of a mutualistic association. Our experimental data further confirmed these potential mutualistic nutritional associations, as cultures of T. putrescentiae with low BLS abundance showed the strongest response after the addition of vitamins. Despite developing an arguably tight dependency on its host, the BLS has probably retained flagellar mobility, as evidenced by the 32 proteins enriched in KEGG pathways associated with flagellar assembly or chemotaxis (e.g., fliC, flgE, and flgK, as highly expressed genes). Some of these proteins probably also facilitate adhesion to host gut cells. The microcin C transporter was identified in the BLS, suggesting that microcin C may be used in competition with other gut bacteria. The 16S DNA sequence comparison indicated a mite clade of BLSs with a broad host range, including house dust and stored-product mites. Our phylogenomic analyses identified a unique lineage of arachnid specific BLSs in mites and scorpions.IMPORTANCEA Bartonella-like symbiont was found in an astigmatid mite of allergenic importance. We assembled the genome of the bacterium from metagenomes of different stored-product mite (T. putrescentiae) cultures. The bacterium provides pantothenate and lipoic acid to the mite host. The vitamin supply explains the changes in the relative abundance of BLSs in T. putrescentiae as the microbiome response to nutritional or pesticide stress, as observed previously. The phylogenomic analyses of available 16S DNA sequences originating from mite, scorpion, and insect samples identified a unique lineage of arachnid specific forming large Bartonella clade. BLSs associated with mites and a scorpion. The Bartonella clade included the previously described Ca. Tokpelaia symbionts of ants.
- Klíčová slova
- Bartonella, ants, house dust, mite, nutrition, stored-product, symbionts, vitamin,
- MeSH
- Acaridae * mikrobiologie MeSH
- alergeny MeSH
- Bacteria MeSH
- Bartonella * genetika MeSH
- kyselina lipoová * MeSH
- roztoči * genetika MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alergeny MeSH
- kyselina lipoová * MeSH
BACKGROUND: The contribution of the microbiome to pesticide breakdown in agricultural pests remains unclear. We analyzed the effect of pirimiphos-methyl (PM) on four geographically different cultures of the stored product pest mite Acarus siro (6 L, 6Tu, 6Tk and 6Z) under laboratory experiments. The effect of PM on mite mortality in the impregnated filter paper test was compared. RESULTS: The mite sensitivity to PM decreased in the order of 6 L, 6Tu, 6Tk, and 6Z. Then, the mites were cultured on PM residues (0.0125 and 1.25 µg·g-1), and population growth was compared to the control after 21 days of exposure. The comparison showed two situations: (i) increasing population growth for the most sensitive cultures (6 L and 6Tu), and (ii) no effect on mite population growth for tolerant cultures (6Z and 6Tk). The microbiome of mites was analyzed by quantification of 16S DNA copies based on quantitative polymerase chain reaction (qPCR) and by barcode sequencing of the V4 fragment of 16S DNA on samples of 30 individuals from the control and PM residues. The microbiome comprised primarily Solitalea-like organisms in all cultures, except for 6Z, followed by Bacillus, Staphylococcus, and Lactobacillus. The microbiomes of mite cultures did not change with increasing population density. The microbiome of cultures without any differences in population density showed differences in the microbiome composition. A Sodalis-like symbiont replaced Solitalea in the 1.25 µg·g-1 PM in the 6Tk culture. Sodalis and Bacillus prevailed in the microbiomes of PM-treated mites of 6Z culture, while Solitalea was almost absent. CONCLUSION: The results showed that the microbiome of A. siro differs in composition and in response to PM residues in the diet. The results indicate that Sodalis-like symbionts can help recover mites from pesticide-induced stress.
- Klíčová slova
- Pesticide; Storage; Interaction; Tolerance; Symbionts,
- MeSH
- Acaridae * MeSH
- Bacteroidetes MeSH
- lidé MeSH
- mikrobiota * MeSH
- rezidua pesticidů * MeSH
- roztoči * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pirimiphos methyl MeSH Prohlížeč
- rezidua pesticidů * MeSH