Most cited article - PubMed ID 35957226
Model Predictive Direct Torque Control and Fuzzy Logic Energy Management for Multi Power Source Electric Vehicles
This research introduces a new technique to control constrained nonlinear systems, named Lyapunov-based neural network model predictive control using a metaheuristic optimization approach. This controller utilizes a feedforward neural network model as a prediction model and employs the driving training based optimization algorithm to resolve the related constrained optimization problem. The proposed controller relies on the simplicity and accuracy of the feedforward neural network model and the convergence speed of the driving training based optimization algorithm. The closed-loop stability of the developed controller is ensured by including the Lyapunov function as a constraint in the cost function. The efficiency of the suggested controller is illustrated by controlling the angular speed of three-phase squirrel cage induction motor. The reached results are contrasted to those of other methods, specifically the fuzzy logic controller optimized by teaching learning-based optimization algorithm, the optimized PID with particle swarm optimization algorithm, the neural network model predictive controller based on particle swarm optimization algorithm, and the neural network model predictive controller using driving training based optimization algorithm. This comparative study showcase that the suggested controller provides good accuracy, quickness and robustness due to the obtained values of the mean absolute error, mean square error root mean square error, enhancement percentage, and computing time in the different simulation cases, and it can be efficiently utilized to control constrained nonlinear systems with fast dynamics.
- Keywords
- Constraints, DTBO, Lyapunov function, Metaheuristic, Model predictive control, Neural network, Nonlinear system, Squirrel cage induction motor,
- Publication type
- Journal Article MeSH
This paper presents a cutting-edge Sustainable Power Management System for Light Electric Vehicles (LEVs) using a Hybrid Energy Storage Solution (HESS) integrated with Machine Learning (ML)-enhanced control. The system's central feature is its ability to harness renewable energy sources, such as Photovoltaic (PV) panels and supercapacitors, which overcome traditional battery-dependent constraints. The proposed control algorithm orchestrates power sharing among the battery, supercapacitor, and PV sources, optimizing the utilization of available renewable energy and ensuring stringent voltage regulation of the DC bus. Notably, the ML-based control ensures precise torque and speed regulation, resulting in significantly reduced torque ripple and transient response times. In practical terms, the system maintains the DC bus voltage within a mere 2.7% deviation from the nominal value under various operating conditions, a substantial improvement over existing systems. Furthermore, the supercapacitor excels at managing rapid variations in load power, while the battery adjusts smoothly to meet the demands. Simulation results confirm the system's robust performance. The HESS effectively maintains voltage stability, even under the most challenging conditions. Additionally, its torque response is exceptionally robust, with negligible steady-state torque ripple and fast transient response times. The system also handles speed reversal commands efficiently, a vital feature for real-world applications. By showcasing these capabilities, the paper lays the groundwork for a more sustainable and efficient future for LEVs, suggesting pathways for scalable and advanced electric mobility solutions.
Any engineering system involves transitions that reduce the performance of the system and lower its comfort. In the field of automotive engineering, the combination of multiple motors and multiple power sources is a trend that is being used to enhance hybrid electric vehicle (HEV) propulsion and autonomy. However, HEV riding comfort is significantly reduced because of high peaks that occur during the transition from a single power source to a multisource powering mode or from a single motor to a multiple motor traction mode. In this study, a novel model-based soft transition algorithm (STA) is used for the suppression of large transient ripples that occur during HEV drivetrain commutations and power source switches. In contrast to classical abrupt switching, the STA detects transitions, measures their rates, generates corresponding transition periods, and uses adequate transition functions to join the actual and the targeted operating points of a given HEV system variable. As a case study, the STA was applied to minimize the transition ripples that occur in a fuel cell-supercapacitor HEV. The transitions that occurred within the HEV were handled using two proposed transition functions which were: a linear-based transition function and a stair-based transition function. The simulation results show that, in addition to its ability to improve driving comfort by minimizing transient torque ripples and DC bus voltage fluctuations, the STA helps to increase the lifetime of the motor and power sources by reducing the currents drawn during the transitions. It is worth noting that the considered HEV runs on four-wheel drive when the load torque applied on it exceeds a specified torque threshold; otherwise, it operates in rear-wheel drive.
- Keywords
- fuel cell (FC), hybrid electric vehicle, operating point, soft transition algorithm, supercapacitor (SC), transition function,
- MeSH
- Algorithms * MeSH
- Electricity MeSH
- Motor Vehicles MeSH
- Computer Simulation MeSH
- Automobile Driving * MeSH
- Electric Power Supplies MeSH
- Publication type
- Journal Article MeSH