Most cited article - PubMed ID 36081834
Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods
A wide range of portable chlorophyll meters are increasingly being used to measure leaf chlorophyll content as an indicator of plant performance, providing reference data for remote sensing studies. We tested the effect of leaf anatomy on the relationship between optical assessments of chlorophyll (Chl) against biochemically determined Chl content as a reference. Optical Chl assessments included measurements taken by four chlorophyll meters: three transmittance-based (SPAD-502, Dualex-4 Scientific, and MultispeQ 2.0), one fluorescence-based (CCM-300), and vegetation indices calculated from the 400-2500 nm leaf reflectance acquired using an ASD FieldSpec and a contact plant probe. Three leaf types with different anatomy were included: dorsiventral laminar leaves, grass leaves, and needles. On laminar leaves, all instruments performed well for chlorophyll content estimation (R2 > 0.80, nRMSE < 15%), regardless of the variation in their specific internal structure (mesomorphic, scleromorphic, or scleromorphic with hypodermis), similarly to the performance of four reflectance indices (R2 > 0.90, nRMSE < 16%). For grasses, the model to predict chlorophyll content across multiple species had low performance with CCM-300 (R2 = 0.45, nRMSE = 11%) and failed for SPAD. For Norway spruce needles, the relation of CCM-300 values to chlorophyll content was also weak (R2 = 0.45, nRMSE = 11%). To improve the accuracy of data used for remote sensing algorithm development, we recommend calibration of chlorophyll meter measurements with biochemical assessments, especially for species with anatomy other than laminar dicot leaves. The take-home message is that portable chlorophyll meters perform well for laminar leaves and grasses with wider leaves, however, their accuracy is limited for conifer needles and narrow grass leaves. Species-specific calibrations are necessary to account for anatomical variations, and adjustments in sampling protocols may be required to improve measurement reliability.
- Keywords
- Chlorophyll, Leaf pigments, Leaf structure, Leaf with hypodermis, Remote sensing, Vegetation index,
- MeSH
- Chlorophyll * analysis MeSH
- Plant Leaves * anatomy & histology chemistry metabolism MeSH
- Remote Sensing Technology methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorophyll * MeSH
Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350- to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.
- Publication type
- Journal Article MeSH
Norway spruce has a wide natural distribution range, harboring substantial physiological and genetic variation. There are three altitudinal ecotypes described in this species. Each ecotype has been shaped by natural selection and retains morphological and physiological characteristics. Foliar spectral reflectance is readily used in evaluating the physiological status of crops and forest ecosystems. However, underlying genetics of foliar spectral reflectance and pigment content in forest trees has rarely been investigated. We assessed the reflectance in a clonal bank comprising three ecotypes in two dates covering different vegetation season conditions. Significant seasonal differences in spectral reflectance among Norway spruce ecotypes were manifested in a wide-ranging reflectance spectrum. We estimated significant heritable variation and uncovered phenotypic and genetic correlations among growth and physiological traits through bivariate linear models utilizing spatial corrections. We confirmed the relative importance of the red edge within the context of the study site's ecotypic variation. When interpreting these findings, growth traits such as height, diameter, crown length, and crown height allowed us to estimate variable correlations across the reflectance spectrum, peaking in most cases in wavelengths connected to water content in plant tissues. Finally, significant differences among ecotypes in reflectance and other correlated traits were detected.
Imaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical and structural traits is challenged by natural variability and measurement uncertainties. Sources of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) implementation of retrieval algorithms and (2) their parameterization and validation of quantitative products through in situ field measurements. The challenges are outlined and discussed for empirical and physical leaf and canopy radiative transfer modelling components, considering both forward and inverse modes. Discussion on optical remote sensing validation schemes includes also description of a multiscale validation concept and its advantages. Impacts of intraspecific and interspecific variability on collected field and laboratory measurements of leaf biochemical traits and optical properties are demonstrated for selected plant species, and field measurement uncertainty sources are listed and discussed specifically for foliar pigments and canopy leaf area index. The review concludes with the main findings and suggestions as how to reduce uncertainties and include variability in scaling vegetation imaging spectroscopy signals and functional traits of single leaves up to observations of whole canopies.
- Keywords
- Imaging spectroscopy, Inversion, Multiscale validation, Quantitative remote sensing, Radiative transfer models, Retrieval of vegetation traits, Scaling, Uncertainty, Variability,
- Publication type
- Journal Article MeSH