Most cited article - PubMed ID 36216589
Computer Aided Development of Nucleic Acid Applications in Nanotechnologies
The structure and deformability of double-stranded DNA and RNA depend on the sequence of bases, affecting biological processes and nanostructure design, but this dependence is incompletely understood. Here we present mechanical properties of DNA and RNA duplexes inferred from atomic-resolution, explicit-solvent molecular dynamics (MD) simulations of 107 DNA and 107 RNA oligomers containing all hexanucleotide sequences. In addition to the level of rigid bases, minor and major grooves, we probe the length and sequence dependence of global material constants such as persistence lengths, stretching and twisting rigidities. We propose a simple model to predict sequence-dependent shape and nonlocal, harmonic stiffness for an arbitrary sequence, validate it on an independent set of MD simulations for DNA and RNA duplexes containing all pentamers, and demonstrate its utility in various applications. The large amount of the simulated data enabled us to study rare events, such as base-pair opening, or flips of the A-RNA sugar pucker into the B domain and the related dynamics of the 2'-OH group. Together, this work provides a comprehensive sequence-specific description of DNA and RNA duplex mechanics, forming a baseline for further research and allowing for a broad range of applications.
- MeSH
- DNA * chemistry MeSH
- Nucleic Acid Conformation MeSH
- RNA * chemistry MeSH
- Base Sequence MeSH
- Molecular Dynamics Simulation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA * MeSH
- RNA * MeSH
Molecular dynamics (MD) simulations are an important and well-established tool for investigating RNA structural dynamics, but their accuracy relies heavily on the quality of the employed force field (ff). In this work, we present a comprehensive evaluation of widely used pair-additive and polarizable RNA ffs using the challenging UUCG tetraloop (TL) benchmark system. Extensive standard MD simulations, initiated from the NMR structure of the 14-mer UUCG TL, revealed that most ffs did not maintain the native state, instead favoring alternative loop conformations. Notably, three very recent variants of pair-additive ffs, OL3CP-gHBfix21, DES-Amber, and OL3R2.7, successfully preserved the native structure over a 10 × 20 μs time scale. To further assess these ffs, we performed enhanced sampling folding simulations of the shorter 8-mer UUCG TL, starting from the single-stranded conformation. Estimated folding free energies (ΔG°fold) varied significantly among these three ffs, with values of 0.0 ± 0.6, 2.4 ± 0.8, and 7.4 ± 0.2 kcal/mol for OL3CP-gHBfix21, DES-Amber, and OL3R2.7, respectively. The ΔG°fold value predicted by the OL3CP-gHBfix21 ff was closest to experimental estimates, ranging from -1.6 to -0.7 kcal/mol. In contrast, the higher ΔG°fold values obtained using DES-Amber and OL3R2.7 were unexpected, suggesting that key interactions are inaccurately described in the folded, unfolded, or misfolded ensembles. These discrepancies led us to further test DES-Amber and OL3R2.7 ffs on additional RNA and DNA systems, where further performance issues were observed. Our results emphasize the complexity of accurately modeling RNA dynamics and suggest that creating an RNA ff capable of reliably performing across a wide range of RNA systems remains extremely challenging. In conclusion, our study provides valuable insights into the capabilities of current RNA ffs and highlights key areas for future ff development.
- MeSH
- Nucleic Acid Conformation MeSH
- RNA * chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA * MeSH
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.
- MeSH
- Nucleic Acid Conformation MeSH
- RNA Recognition Motif * MeSH
- RNA-Binding Proteins * chemistry metabolism MeSH
- RNA * metabolism chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA-Binding Proteins * MeSH
- RNA * MeSH