Chromosomal rearrangements act as barriers to gene flow and can thus promote speciation. In moths and butterflies (Lepidoptera), which possess holocentric chromosomes facilitating karyotype changes, chromosome fusions are more common than fissions. Yet, limited evidence suggests that when speciation involves chromosomal rearrangements, it is most often linked to fissions. Notable karyotypic variation is observed in three clades of the subfamily Polyommatinae (Lycaenidae), with chromosome numbers ranging from n = 10 to 225. We investigated genome sizes and karyotypes in several species of the genera Polyommatus and Lysandra with modal and derived high chromosome numbers. Our findings showed no support for polyploidy, confirming previous conclusions about karyotypic diversification via chromosome fragmentation in this butterfly family. Species with high chromosome numbers have slightly larger genomes, which indicate a potential role of repetitive sequences but contradict the hypothesis of holocentric drive. Ends of fragmented chromosomes were healed with telomeres synthesized de novo, which were significantly larger than those of species with modal karyotype. No interstitial telomeric sequences were detected on autosomes. Internal telomeric signals on sex chromosomes, however, revealed multiple sex chromosome systems in Polyommatus (Plebicula) dorylas and Polyommatus icarus, with two karyotype races differing in sex chromosome constitution in the latter. Notably, the W chromosome resisted fragmentation, presumably due to its epigenetic silencing.
- Klíčová slova
- Polyommatus, butterfly, fission, fusion, sex chromosomes, telomere,
- MeSH
- chromozomy hmyzu MeSH
- karyotyp MeSH
- motýli * genetika MeSH
- pohlavní chromozomy * genetika MeSH
- polyploidie MeSH
- telomery * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Satellite DNAs (satDNAs) are abundant components of eukaryotic genomes, playing pivotal roles in chromosomal organization, genome stability, and evolution. Here, we combined cytogenetic and genomic methods to characterize the satDNAs in the genomes of Leptidea butterflies. Leptidea is characterized by the presence of a high heterochromatin content, large genomes, and extensive chromosomal reshuffling as well as the occurrence of cryptic species. We show that, in contrast to other Lepidoptera, satDNAs constitute a considerable proportion of Leptidea genomes, ranging between 4.11% and 11.05%. This amplification of satDNAs, together with the hyperactivity of transposable elements, contributes to the substantial genome expansion in Leptidea. Using chromosomal mapping, we show that, particularly LepSat01-100 and LepSat03-167 satDNAs, are preferentially localized in heterochromatin exhibiting variable distribution that may have contributed to the highly diverse karyotypes within the genus. The satDNAs also exhibit W-chromosome accumulation, suggesting their involvement in sex chromosome evolution. Our results provide insights into the dynamics of satDNAs in Lepidoptera genomes and highlight their role in genome expansion and chromosomal organization, which could influence the speciation process. The high proportion of repetitive DNAs in the genomes of Leptidea underscores the complex evolutionary dynamics revealing the interplay between repetitive DNAs and genomic architecture in the genus.
- Klíčová slova
- Lepidoptera, chromosome mapping, cryptic species, genome evolution, repetitive DNA,
- MeSH
- fylogeneze MeSH
- genom hmyzu * MeSH
- heterochromatin genetika MeSH
- karyotyp * MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- motýli * genetika MeSH
- satelitní DNA * genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- heterochromatin MeSH
- satelitní DNA * MeSH
- transpozibilní elementy DNA MeSH
The W chromosome of Lepidoptera is typically gene-poor, repeat-rich and composed of heterochromatin. Pioneering studies investigating this chromosome reported an abundance of mobile elements. However, the actual composition of the W chromosome varies greatly between species, as repeatedly demonstrated by comparative genomic hybridization (CGH) or fluorescence in situ hybridization (FISH). Here we present an analysis of repeats on the W chromosome in the willow beauty, Peribatodes rhomboidaria (Geometridae), a species in which CGH predicted an abundance of W-enriched or W-specific sequences. Indeed, comparative analysis of male and female genomes using RepeatExplorer identified ten putative W chromosome-enriched repeats, most of which are LTR or LINE mobile elements. We analysed the two most abundant: PRW LINE-like and PRW Bel-Pao. The results of FISH mapping and bioinformatic analysis confirmed their enrichment on the W chromosome, supporting the hypothesis that mobile elements are the driving force of W chromosome differentiation in Lepidoptera. As the W chromosome is highly underrepresented in chromosome-level genome assemblies of Lepidoptera, this recently introduced approach, combining bioinformatic comparative genome analysis with molecular cytogenetics, provides an elegant tool for studying this elusive and rapidly evolving part of the genome.
- MeSH
- hybridizace in situ fluorescenční MeSH
- můry * genetika MeSH
- pohlavní chromozomy genetika MeSH
- retroelementy genetika MeSH
- Salix * genetika MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy MeSH