Nejvíce citovaný článek - PubMed ID 36247363
The Spectral Species Concept in Living Color
The ecosystem services offered by pollinators are vital for supporting agriculture and ecosystem functioning, with bees standing out as especially valuable contributors among these insects. Threats such as habitat fragmentation, intensive agriculture, and climate change are contributing to the decline of natural bee populations. Remote sensing could be a useful tool to identify sites of high diversity before investing into more expensive field survey. In this study, the ability of Unoccupied Aerial Vehicles (UAV) images to estimate biodiversity at a local scale has been assessed while testing the concept of the Height Variation Hypothesis (HVH). This hypothesis states that the higher the vegetation height heterogeneity (HH) measured by remote sensing information, the higher the vegetation vertical complexity and the associated species diversity. In this study, the concept has been further developed to understand if vegetation HH can also be considered a proxy for bee diversity and abundance. We tested this approach in 30 grasslands in the South of the Netherlands, where an intensive field data campaign (collection of flower and bee diversity and abundance) was carried out in 2021, along with a UAV campaign (collection of true color-RGB-images at high spatial resolution). Canopy Height Models (CHM) of the grasslands were derived using the photogrammetry technique "Structure from Motion" (SfM) with horizontal resolution (spatial) of 10 cm, 25 cm, and 50 cm. The accuracy of the CHM derived from UAV photogrammetry was assessed by comparing them through linear regression against local CHM LiDAR (Light Detection and Ranging) data derived from an Airborne Laser Scanner campaign completed in 2020/2021, yielding an [Formula: see text] of 0.71. Subsequently, the HH assessed on the CHMs at the three spatial resolutions, using four different heterogeneity indices (Rao's Q, Coefficient of Variation, Berger-Parker index, and Simpson's D index), was correlated with the ground-based flower and bee diversity and bee abundance data. The Rao's Q index was the most effective heterogeneity index, reaching high correlations with the ground-based data (0.44 for flower diversity, 0.47 for bee diversity, and 0.34 for bee abundance). Interestingly, the correlations were not significantly influenced by the spatial resolution of the CHM derived from UAV photogrammetry. Our results suggest that vegetation height heterogeneity can be used as a proxy for large-scale, standardized, and cost-effective inference of flower diversity and habitat quality for bees.
- MeSH
- bronchiální astma * MeSH
- ekosystém * MeSH
- fotogrammetrie MeSH
- květy MeSH
- pastviny MeSH
- včely MeSH
- zemědělství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The "Height Variation Hypothesis" is an indirect approach used to estimate forest biodiversity through remote sensing data, stating that greater tree height heterogeneity (HH) measured by CHM LiDAR data indicates higher forest structure complexity and tree species diversity. This approach has traditionally been analyzed using only airborne LiDAR data, which limits its application to the availability of the dedicated flight campaigns. In this study we analyzed the relationship between tree species diversity and HH, calculated with four different heterogeneity indices using two freely available CHMs derived from the new space-borne GEDI LiDAR data. The first, with a spatial resolution of 30 m, was produced through a regression tree machine learning algorithm integrating GEDI LiDAR data and Landsat optical information. The second, with a spatial resolution of 10 m, was created using Sentinel-2 images and a deep learning convolutional neural network. We tested this approach separately in 30 forest plots situated in the northern Italian Alps, in 100 plots in the forested area of Traunstein (Germany) and successively in all the 130 plots through a cross-validation analysis. Forest density information was also included as influencing factor in a multiple regression analysis. Our results show that the GEDI CHMs can be used to assess biodiversity patterns in forest ecosystems through the estimation of the HH that is correlated to the tree species diversity. However, the results also indicate that this method is influenced by different factors including the GEDI CHMs dataset of choice and their related spatial resolution, the heterogeneity indices used to calculate the HH and the forest density. Our finding suggest that GEDI LIDAR data can be a valuable tool in the estimation of forest tree heterogeneity and related tree species diversity in forest ecosystems, which can aid in global biodiversity estimation.
- Klíčová slova
- Canopy height model, GEDI, Height heterogeneity, Rao’s Q index, Remote sensing, Species diversity,
- Publikační typ
- časopisecké články MeSH