Nejvíce citovaný článek - PubMed ID 3624914
BACKGROUND: Lyme disease, caused by Borrelia burgdorferi sensu lato (s.l.), is the most common vector-borne disease in the Northern Hemisphere, with Ixodes ticks as its primary vectors. However, many patients do not recall tick bites, fueling speculation about alternative transmission routes, particularly via mosquito bites. This belief is reinforced by studies reporting Borrelia presence in mosquitoes. This study evaluates whether three mosquito species can acquire, maintain, and transmit Borrelia spirochetes. METHODS: Mosquitoes (Aedes aegypti, Culex quinquefasciatus, and Culex pipiens biotype molestus) were fed on Borrelia-infected mice to assess pathogen acquisition. Additional experiments involved ex vivo feeding on Borrelia-enriched blood to examine spirochete persistence in the mosquito gut. The potential for mechanical transmission was tested by simulating interrupted feeding between infected and naive hosts. The role of trypsin in Borrelia survival and infectivity was also investigated. RESULTS: Mosquitoes exhibited low efficiency in acquiring Borrelia from infected hosts. Spirochetes artificially introduced through ex vivo blood meals were rapidly eliminated during digestion, primarily due to trypsin activity. Inhibition of trypsin prolonged spirochete persistence and infectivity in the mosquito gut. Mechanical transmission experiments revealed no evidence of Borrelia transmission from infected to naive hosts. CONCLUSIONS: Our findings demonstrate that mosquitoes lack the biological capacity to efficiently acquire and maintain B. burgdorferi s.l. spirochetes and are unable to transmit them through natural or mechanical means. This study provides compelling evidence against mosquito-borne transmission of Lyme disease and reinforces Ixodes ticks as the sole competent vectors, which is crucial for targeted public health interventions and accurate risk communication.
- Klíčová slova
- Borrelia, Borreliosis, Lyme disease, Mosquito, Tick, Transmission,
- MeSH
- Aedes * mikrobiologie MeSH
- Borrelia burgdorferi * fyziologie MeSH
- Culex * mikrobiologie MeSH
- klíště mikrobiologie MeSH
- komáří přenašeči * mikrobiologie MeSH
- lymeská nemoc * přenos mikrobiologie MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Spirochetal bacteria were successfully isolated from mosquitoes (Culex pipiens, Aedes cinereus) in the Czech Republic between 1999 and 2002. Preliminary 16S rRNA phylogenetic sequence analysis showed that these strains differed significantly from other spirochetal genera within the family Spirochaetaceae and suggested a novel bacterial genus in this family. To obtain more comprehensive genomic information of these isolates, we used Illumina MiSeq and Oxford Nanopore technologies to sequence four genomes of these spirochetes (BR151, BR149, BR193, BR208). The overall size of the genomes varied between 1.68 and 1.78 Mb; the GC content ranged from 38.5 to 45.8%. Draft genomes were compared to 36 publicly available genomes encompassing eight genera from the class Spirochaetes. A phylogeny generated from orthologous genes across all taxa and the percentage of conserved proteins (POCP) confirmed the genus status of these novel spirochetes. The genus Entomospira gen. nov. is proposed with BR151 selected as type species of the genus. For this isolate and the closest related isolate, BR149, we propose the species name Entomospira culicis sp. nov. The two other isolates BR208 and BR193 are named Entomospira nematocera sp. nov. (BR208) and Entomospira entomophilus sp. nov. (BR193). Finally, we discuss their interesting phylogenetic positioning.
- MeSH
- členovci genetika MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA metody MeSH
- Spirochaeta genetika MeSH
- Spirochaetales klasifikace genetika izolace a purifikace MeSH
- techniky typizace bakterií metody MeSH
- zastoupení bazí genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH