Nejvíce citovaný článek - PubMed ID 36523633
Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression
CitCAT1 and CitCAT2 were cloned and highly expressed in mature leaves. High temperatures up-regulated CitCAT1 expression, while low temperatures and Diversispora versiformis up-regulated CitCAT2 expression, maintaining a low oxidative damage. Catalase (CAT), a tetrameric heme-containing enzyme, removes hydrogen peroxide (H2O2) to maintain low oxidative damage in plants exposed to environmental stress. This study aimed to clone CAT genes from Citrus sinensis cv. "Oita 4" and analyze their expression patterns in response to environmental stress, exogenous abscisic acid (ABA), and arbuscular mycorrhizal fungal inoculation. Two CAT genes, CitCAT1 (NCBI accession: PP067858) and CitCAT2 (NCBI accession: PP061394) were cloned, and the open reading frames of their proteins were 1479 bp and 1539 bp, respectively, each encoding 492 and 512 amino acids predicted to be localized in the peroxisome, with CitCAT1 being a stable hydrophilic protein and CitCAT2 being an unstable hydrophilic protein. The similarity of their amino acid sequences reached 83.24%, and the two genes were distantly related. Both genes were expressed in stems, leaves, flowers, and fruits, accompanied by the highest expression in mature leaves. In addition, CitCAT1 expression was mainly up-regulated by high temperatures (37 °C), exogenous ABA, and PEG stress within a short period of time, whereas CitCAT2 expression was up-regulated by exogenous ABA and low-temperature (4 °C) stress. Low temperatures (0 °C) for 12 h just up-regulated CitCAT2 expression in Diversispora versiformis-inoculated plants, and D. versiformis inoculation up-regulated CitCAT2 expression, along with lower hydrogen peroxide and malondialdehyde levels in mycorrhizal plants at low temperatures. It is concluded that CitCAT2 has an important role in resistance to low temperatures as well as mycorrhizal enhancement of host resistance to low temperatures.
- Klíčová slova
- Antioxidase, Catalase, Citrus, Hydrogen peroxide, Low temperatures, Mycorrhiza,
- MeSH
- fyziologický stres genetika MeSH
- houby * MeSH
- klonování DNA MeSH
- mykorhiza * fyziologie MeSH
- peroxid vodíku MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxid vodíku MeSH
BACKGROUND: Arbuscular mycorrhizal fungi (AMF) have a positive effect on drought tolerance of plants after establishing reciprocal resymbiosis with roots, while the underlying mechanism is not deciphered. Metabolomics can explain the mechanism of plant response to environmental stress by analyzing the changes of all small molecular weight metabolites. The purpose of this study was to use Ultra High Performance Liquid Chromatography Q Exactive Mass Spectrometer to analyze changes in root metabolites of walnut (Juglans regia) after inoculation with an arbuscular mycorrhizal fungus Diversispora spurca under well-watered (WW) and drought stress (DS). RESULTS: Sixty days of soil drought significantly inhibited root mycorrhizal colonization rate, shoot and root biomass production, and leaf water potential in walnut, while AMF inoculation significantly increased biomass production and leaf water potential, accompanied by a higher increase magnitude under DS versus under WW. A total of 3278 metabolites were identified. Under WW, AMF inoculation up-regulated 172 metabolites and down-regulated 61 metabolites, along with no changes in 1104 metabolites. However, under DS, AMF inoculation up-regulated 49 metabolites and down-regulated 116 metabolites, coupled with no changes in 1172 metabolites. Among them, juglone (a quinone found in walnuts) as the first ranked differential metabolite was up-regulated by AMF under WW but not under DS; 2,3,5-trihydroxy-5-7-dimethoxyflavanone as the first ranked differential metabolite was increased by AMF under DS but not under WW. The KEGG annotation showed a large number of metabolic pathways triggered by AMF, accompanied by different metabolic pathways under WW and DS. Among them, oxidative phosphorylation and phenylalanine metabolism and biosynthesis were triggered by AMF in response to WW and DS, where N-acetyl-L-phenylalanine was induced by AMF to increase under DS, while decreasing under WW. CONCLUSION: This study provides new insights into the metabolic mechanisms of mycorrhiza-enhanced drought tolerance in walnuts.
- Klíčová slova
- Juglone, Metabolite, Nut fruits, Phenylalanine, Symbiosis, Walnut, Water deficit,
- MeSH
- Juglans * MeSH
- metabolomika MeSH
- mykorhiza * MeSH
- období sucha MeSH
- odolnost proti suchu MeSH
- Publikační typ
- časopisecké články MeSH
Walnut (Juglans regia) is an important nut tree species in the world, whereas walnut trees often face inadequate phosphorus (P) levels of soil, negatively limiting its growth and yield. Arbuscular mycorrhizal fungi (AMF) can colonize walnut roots, but whether and how AMF promotes walnut growth, physiological activities, and P acquisition is unclear. The present study aimed to evaluate the effects of Diversispora spurca on plant growth, chlorophyll component concentrations, leaf gas exchange, sugar and P concentrations, and expression of purple acid phosphatase (PAP) and phosphate transporter (PT) genes in leaves of J. regia var. Liaohe 1 seedling under moderate (100 μmol/L P) and low P (1 μmol/L P) levels conditions. Three months after inoculation, the root mycorrhizal colonization rate and soil hyphal length were 45.6-53.2% and 18.7-39.9 cm/g soil, respectively, and low P treatment significantly increased both root mycorrhizal colonization rate and soil hyphal length. Low P levels inhibited plant growth (height, stem diameter, and total biomass) and leaf gas exchange (photosynthetic rate, transpiration rate and stomatal conductance), while AMF colonization significantly increased these variables at moderate and low P levels. Low P treatment limited the level of chlorophyll a, but AMF colonization did not significantly affect the level of chlorophyll components, independent on soil P levels. AMF colonization also increased leaf glucose at appropriate P levels and leaf fructose at low P levels than non-AMF treatment. AMF colonization significantly increased leaf P concentration by 21.0-26.2% than non-AMF colonization at low and moderate P levels. Low P treatment reduced the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 in the inoculated plants, whereas AMF colonization up-regulated the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 at moderate P levels, although AMF did not significantly alter the expression of JrPAPs and JrPTs at low P levels. It is concluded that AMF improved plant growth, leaf gas exchange, and P acquisition of walnut seedlings at different P levels, where mycorrhizal promotion of P acquisition was dominated by direct mycorrhizal involvement in P uptake at low P levels, while up-regulation of host PAPs and PTs expressions at moderate P levels.
- Klíčová slova
- P deficit, mycorrhiza, phosphate transporter, purple acid phosphatase, walnut,
- Publikační typ
- časopisecké články MeSH