Nejvíce citovaný článek - PubMed ID 36676572
Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers
We modified native wheat starch using 15, 30, and 60 min of acid hydrolysis (AH). The non-modified and AH-modified starches were converted to highly homogeneous thermoplastic starches (TPSs) using our two-step preparation protocol consisting of solution casting and melt mixing. Our main objective was to verify if AH can decrease the processing temperature of TPS. All samples were characterized in detail by microscopic, spectroscopic, diffraction, thermomechanical, rheological, and micromechanical methods, including in situ measurements of torque and temperature during the final melt mixing step. The experimental results showed that (i) AH decreased the average molecular weight preferentially in the amorphous regions, (ii) the lower-viscosity matrix in the AH-treated starches resulted in slightly higher crystallinity, and (iii) all AH-modified TPSs with a less viscous amorphous phase and higher content of crystalline phase exhibited similar properties. The effect of the higher crystallinity predominated at a laboratory temperature and low deformations, resulting in slightly stiffer material. The effect of the lower viscosity dominated during the melt mixing, where the shorter molecules acted as a lubricant and decreased the in situ measured processing temperature. The AH-induced decrease in the processing temperature could be beneficial for energy savings and/or possible temperature-sensitive admixtures for TPS systems.
- Klíčová slova
- low viscosity, melt mixing, processing temperature, thermoplastic starch,
- Publikační typ
- časopisecké články MeSH