Nejvíce citovaný článek - PubMed ID 37015225
Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator
Electroencephalography (EEG) has been instrumental in epilepsy research for the past century, both for basic and translational studies. Its contributions have advanced our understanding of epilepsy, shedding light on the pathophysiology and functional organization of epileptic networks, and the mechanisms underlying seizures. Here we re-examine the historical significance, ongoing relevance, and future trajectories of EEG in epilepsy research. We describe traditional approaches to record brain electrical activity and discuss novel cutting-edge, large-scale techniques using micro-electrode arrays. Contemporary EEG studies explore brain potentials beyond the traditional Berger frequencies to uncover underexplored mechanisms operating at ultra-slow and high frequencies, which have proven valuable in understanding the principles of ictogenesis, epileptogenesis, and endogenous epileptogenicity. Integrating EEG with modern techniques such as optogenetics, chemogenetics, and imaging provides a more comprehensive understanding of epilepsy. EEG has become an integral element in a powerful suite of tools for capturing epileptic network dynamics across various temporal and spatial scales, ranging from rapid pathological synchronization to the long-term processes of epileptogenesis or seizure cycles. Advancements in EEG recording techniques parallel the application of sophisticated mathematical analyses and algorithms, significantly augmenting the information yield of EEG recordings. Beyond seizures and interictal activity, EEG has been instrumental in elucidating the mechanisms underlying epilepsy-related cognitive deficits and other comorbidities. Although EEG remains a cornerstone in epilepsy research, persistent challenges such as limited spatial resolution, artifacts, and the difficulty of long-term recording highlight the ongoing need for refinement. Despite these challenges, EEG continues to be a fundamental research tool, playing a central role in unraveling disease mechanisms and drug discovery.
- Klíčová slova
- EEG, analysis, animal models, genetic epilepsies, high‐frequency oscillations, mechanisms, preclinical,
- MeSH
- elektroencefalografie * metody MeSH
- epilepsie * patofyziologie diagnóza epidemiologie MeSH
- komorbidita MeSH
- lidé MeSH
- mozek * patofyziologie MeSH
- záchvaty * patofyziologie diagnóza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Measuring the transduction of electrical signals within neurons is a key capability in neuroscience. Fluorescent voltage sensitive dyes (VSDs) were early tools that complemented classical electrophysiology by enabling the optical recording of membrane potential changes from many cells simultaneously. Recent advances in the VSD field have led to bright and highly sensitive sensors that can be targeted to the desired cell populations in live brain tissue. Despite this progress, recently, protein-based genetically encoded voltage indicators (GEVIs) have become the go-to tools for targeted voltage imaging in complex environments. In this Perspective, we summarize progress in developing targetable VSDs, discuss areas where these synthetic sensors are or could become relevant, and outline hurdles that need to be overcome to promote the routine use of targetable VSDs in neuroscience research.
- Klíčová slova
- cell-selective targeting, fluorescent sensor, imaging probe, membrane potential, voltage-sensitive dye,
- MeSH
- akční potenciály * fyziologie MeSH
- fluorescenční barviva * MeSH
- lidé MeSH
- membránové potenciály fyziologie MeSH
- mozek fyziologie MeSH
- neurony * fyziologie MeSH
- zobrazování pomocí barviva citlivého na potenciál * metody trendy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fluorescenční barviva * MeSH