Most cited article - PubMed ID 37374547
Bioactive Glass-Enhanced Resins: A New Denture Base Material
OBJECTIVE: Dental hypersensitivity remains widespread, underscoring the need for materials that can effectively seal dental tubules. This study evaluated the potential of bioactive-glass-infused hydroxyethyl cellulose gels in this context. METHODS: Five gels were synthesized, each containing 20% bioactive glass (specifically, 45S5, S53P4, Biomin F, and Biomin C), with an additional blank gel serving as a control. Subjected to two months of accelerated aging at 37 ± 2 °C, these gels were assessed for key properties: viscosity, water disintegration time, pH level, consistency, adhesion to glass, and element release capability. RESULTS: Across the board, the gels facilitated the release of calcium, phosphate, and silicon ions, raising the pH from 9.00 ± 0.10 to 9.7 ± 0.0-a range conducive to remineralization. Dissolution in water occurred within 30-50 min post-application. Viscosity readings showed variability, with 45S5 reaching 6337 ± 24 mPa/s and Biomin F at 3269 ± 18 mPa/s after two months. Initial adhesion for the blank gel was measured at 0.27 ± 0.04 Pa, increasing to 0.73 ± 0.06 Pa for the others over time. Gels can release elements upon contact with water (Ca- Biomin C 104.8 ± 15.7 mg/L; Na- Biomin F 76.30 ± 11.44 mg/L; P- Biomin C 2.623 ± 0.393 mg/L; Si- 45S5-45.15 ± 6.77mg/L, F- Biomin F- 3.256 ± 0.651mg/L; Cl- Biomin C 135.5 ± 20.3 mg/L after 45 min). CONCLUSIONS: These findings highlight the gels' capacity to kickstart the remineralization process by delivering critical ions needed for enamel layer reconstruction. Further exploration in more dynamic, real-world conditions is recommended to fully ascertain their practical utility.
- Keywords
- bioactive glass, dental gel, enamel repair, ion release, remineralization,
- Publication type
- Journal Article MeSH
The colonisation of the surface of removable acrylic dentures by various types of microorganisms can lead to the development of various diseases. Therefore, the creation of a bioactive material is highly desirable. This study aimed to develop a denture base material designed to release bioactive ions into the oral environment during use. Four types of bioactive glasses (BAG)-S53P4, Biomin F, 45S5, and Biomin C-were incorporated into the PMMA acrylic resin, with each type constituting 20 wt.% (10 wt.% non-silanised and 10% silanised) of the mixture, while PMMA acrylic resin served as the control group. The specimens were subsequently immersed in distilled water, and pH measurements of the aqueous solutions were taken every seven days for a total of 38 days. Additionally, surface roughness and translucency measurements were recorded both after preparation and following seven days of immersion in distilled water. The cytotoxicity of these materials on human fibroblast cells was evaluated after 24 and 48 h using Direct Contact and MTT assays. Ultimately, the elemental composition of the specimens was determined through energy-dispersive X-ray (EDX) spectroscopy. In general, the pH levels of water solutions containing BAG-containing acrylics gradually increased over the storage period, reaching peak values after 10 days. Notably, S53P4 glass exhibited the most significant increase, with pH levels rising from 5.5 to 7.54. Surface roughness exhibited minimal changes upon immersion in distilled water, while a slight decrease in material translucency was observed, except for Biomin C. However, significant differences in surface roughness and translucency were observed among some of the BAG-embedded specimens under both dry and wet conditions. The composition of elements declared by the glass manufacturer was confirmed by EDX analysis. Importantly, cytotoxicity analysis revealed that specimens containing BAGs, when released into the environment, did not adversely affect the growth of human gingival fibroblast cells after 48 h of exposure. This suggests that PMMA acrylics fabricated with BAGs have the potential to release ions into the environment and can be considered biocompatible materials. Further clinical trials are warranted to explore the practical applications of these materials as denture base materials.
- Keywords
- acrylic resin, bioactive glass, cytotoxicity, elemental analysis, ions release, surface roughness,
- Publication type
- Journal Article MeSH