Nejvíce citovaný článek - PubMed ID 37447532
Destruction of Carbon and Glass Fibers during Chip Machining of Composite Systems
The influence of machining parameters on the generation of dust particles during the machining of carbon fiber-reinforced polymer (CFRP) composites remains insufficiently understood. These particles, which stay suspended in the air, pose a serious health risk to operators. This study examined the effects of cutting conditions-specifically cutting speed, feed per tooth, and depth of cut-and the impact of delaminations formed during CFRP drilling on the size, shape, and quantity of hazardous dust particles. Experiments were conducted using a commercially available uncoated cemented carbide cutting tool. The analysis of dust particle size and morphology, as well as the evaluation of delamination, was performed using microscopic and tomographic methods. The results demonstrate that reducing the cutting speed led to a decrease in particle size for the investigated CFRP material. Furthermore, it was observed that tool wear results in the generation of smaller particles. Simultaneous delamination during drilling was found to significantly affect the structural integrity of the composite material.
- Klíčová slova
- CFRP, CT tomography, delamination, drilling, dust particles, electron microscopy, optical microscopy, respiratory hazard,
- Publikační typ
- časopisecké články MeSH
This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, surface quality, dimensional accuracy, burr formation, chip size distribution, and tool wear. Trochoidal milling demonstrated shorter cycle times-up to 23% faster-and higher material removal rates (MRRs), while conventional milling provided superior dimensional control and smoother surfaces in certain fiber-sensitive regions. A four-tooth cutter with a low helix angle (10°) and aluminum-oxide coating delivered the best overall performance, balancing minimal tool wear with high-quality finishes (arithmetic mean roughness, Ra, as low as 1.36 μm). The results indicate that although conventional milling can exhibit a 25%-lower RMS cutting force, its peak forces and extended machining times may limit the throughput. Conversely, trochoidal milling, when coupled with an appropriately robust tool, effectively manages the cutting forces, improves the surface quality, and reduces the machining time. Most chips produced were less than 11 μm in size, highlighting the need for suitable dust extraction. Notably, a hybrid approach-trochoidal roughing followed by conventional finishing-offers a promising method for achieving both efficient material removal and enhanced dimensional accuracy in GFRP components.
- Klíčová slova
- GFRP, adaptive milling, anisotropic materials, burr formation, composite machining, cutting forces, hybrid strategy, surface roughness, tool wear, trochoidal milling,
- Publikační typ
- časopisecké články MeSH
The present study focuses on the elimination of delamination during the drilling of a linen-based biocomposite material in epoxy resin used for the manufacture of sports kayaks, depending on the tool material, cutting conditions, and the use of additional wooden support plates. In the present study, HSS (high-speed steel) and Carbide cutting tools without coatings, with the same geometry and two types of cutting conditions (n = 1500 rpm, fn = 0.05 and 0.1 mm/rev) were used. A Sololite-type wooden backing plate was used to aid in reducing delamination. The results show that the additional support plates significantly reduced delamination by up to 80% both at the material inlet and especially at the drill hole outlet. In this study, the use of a lower feed rate (fn = 0.05 mm/rev) per tooth was shown to have a significant effect on reducing the delamination of biocomposite materials with flax fibers, which are generally known to be difficult to machine. The Carbide cutting tool shows significantly better results both in terms of its wear and in terms of delamination of the biocomposite material. The highest delamination was obtained without the use of a backing board at the tool exit after 50 drilled holes of 3509 µm. With the use of a backing board, this delamination decreased to 693 µm after 50 drilled holes.
- Klíčová slova
- backing plates, biocomposite materials, cutting tool wear, delamination, drilling,
- Publikační typ
- časopisecké články MeSH
Conventional dry machining (without process media) of carbon fibre composite materials (CFRP) produces tiny chips/dust particles that float in the air and cause health hazards to the machining operator. The present study investigates the effect of cutting conditions (cutting speed, feed per tooth and depth of cut) during CFRP milling on the size, shape and amount of harmful dust particles. For the present study, one type of cutting tool (CVD diamond-coated carbide) was used directly for machining CFRP. The analysis of harmful dust particles was carried out on a Tescan Mira 3 (Tescan, Brno, Czech Republic) scanning electron microscope and a Keyence VK-X 1000 (Keyence, Itasca, IL, USA) confocal microscope. The results show that with the combination of higher feed per tooth (mm) and lower cutting speed, for specific CFRP materials, the size and shape of harmful dust particles is reduced. Particles ranging in size from 2.2 to 99 μm were deposited on the filters. Smaller particles were retained on the tool body (1.7 to 40 μm). Similar particle sizes were deposited on the machine and in the work area.
- Klíčová slova
- CFRP, dust particles, electron microscopy, milling, respiratory hazards,
- Publikační typ
- časopisecké články MeSH
This study aimed to investigate the effect of the clearance angle of the milling tool on wear, cutting forces, machined edge roughness, and delamination during non-contiguous milling of carbon-fiber-reinforced plastic (CFRP) composite panels with a twill weave and 90° fiber orientation. To achieve the objective of the study, it was first necessary to design suitable tools (6 mm diameter sintered carbide shank milling cutters) with a variety of clearance angles (8.4°, 12.4°, and 16.4°) and all the machinery and measuring equipment for the research to be carried out. Furthermore, measurement and evaluation methods for cutting tool wear, cutting forces, machined edge roughness, and delamination were developed. Last but not least, the results obtained during the research were summarized and evaluated. From the experiments conducted in this study, it was found that the tool clearance angle has a significant effect on tool wear, roughness of the machined surface, and delamination of the carbon fiber composite board. The tool with a clearance angle of 8.4° wore faster than the tool with a clearance angle of 16.4°. The same trend was observed for cutting force, machined surface roughness, and delamination. In this context, it was also shown that the cutting force increased as the tool wear increased, which in turn increased surface roughness and delamination. These results are of practical significance, not only in terms of the quality of the machined surface but also in terms of time, cost, and energy savings when machining CFRP composite materials.
- Klíčová slova
- CFRP, delamination, milling, tool parameters, tool wear,
- Publikační typ
- časopisecké články MeSH